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Abstract

Situations that require individuals to mutually cooperate are often analysed as
coordination games. This paper proposes a model of cooperative network formation
where the network is formed through the process of the coordination game being played
between multiple agents. Additionally, network effects are modelled in by the fact that
the benefit to any agent from a mutually cooperative link is enhanced, over a base
value, by a factor of her trustworthiness or reputation as observed by her partner in
that link. Within this framework, evolution of cooperative networks is analysed in
the presence of altruistic agents, through repeated interaction between myopically best
responding agents in a finite population. Properties of networks that sustain as Nash
equilibrium are also analysed.

Keywords: coordination game, network formation, game theory, social networks

1 Introduction

This paper analyses the formation of cooperative networks in contexts of cooperative sharing
that have an underlying incentive structure typical of a coordination game. Cooperation
games like the prisoner’s dilemma and the coordination game have been used to represent
many strategic interactions where individuals (also referred to as players or agents) may
benefit from mutual cooperation but may have incentives to refrain from cooperation either
as a dominant strategy or in response to the other player. Many situations of everyday
cooperative interaction such as sharing of resources, combining of efforts for a joint project or
venture, exchange of information and technology that is costly to acquire etc. have incentive
structures typical of the coordination game wherein agents have incentive to cooperate only if
their interacting partner also cooperates. Such a game has two pure strategy Nash equilibria;
one where both agents cooperate, and one where both agents refrain from cooperation.
Further, in situations where the resources or information being shared has a potentially
competitive nature, it is reasonable to assume a conflict between Pareto dominance and
risk dominance in the two Nash equilibria1. This paper attempts to study such interactions

∗The author would like to thank Rajendra P Kundu, Shubhro Sarkar, Anirban Kar, and Debabrata Pal
for helpful comments and suggestions.

1The Nash equilibria refinements of Pareto dominance and risk dominance were first introduced by
Harsanyi and Selten (1988). The risk dominant equilibrium is one which has the largest basin of attraction;
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between multiple individuals in contexts where network effects of cooperation may be of
importance. Proposed here is a model of formation of cooperative networks where the
outcomes of multiple pairwise cooperative interactions determine the network of cooperation.
The idea is that cooperative interactions often happen in a context where the benefit or
value of a link of mutual cooperation to any player may be enhanced by a factor of her own
reputation as perceived by the other interacting player. The assumption that the perception
of one’s reputation by a cooperating partner (also referred to as trustworthiness) enhances
one’s valuation of that mutually cooperative link is supported by the idea that in most
collaborative situations like exchange of information or resources, the quality of information
that one is willing to give and the amount of resources that one is willing to share with a
cooperative partner increases with one’s trust on the partner.

The model of cooperative network formation proposed in this paper has the following
features. Agents in a finite population interact with all other agents in situations where
there are opportunities to benefit from mutual cooperation. In each interaction, agents have
to decide between cooperating or refraining from cooperation. Extending and sustaining
cooperation is costly; for every link of cooperation (reciprocated or non-reciprocated) that
an agent i extends, a cost ci is incurred by her. This cost is an indicator of not only the
logistical costs of sharing resources or information, but also any other exogenous factors
that may increase the effort or investment that i needs to make to derive benefits from
the link. As mentioned before, payoffs from mutual cooperation as well as from unilateral
cooperation are typical of a coordination game. Further, the benefit to any agent from a
mutually cooperative link is enhanced, over a base value, by a factor of her trustworthiness,
i.e. her reputation as observed by her partner in that link. Agent i’s trustworthiness to j is
simply the number of instance that agent j can observe, through common mutual cooperative
partners, in which agent i extends cooperation. With this consideration, there may be
situations where sustaining non-reciprocated cooperation is not sub-optimal for an agent
because of the indirect utility or value that it generates by enhancing her reputation and
trustworthiness in other interactions.

While cooperation is costly, we assume the presence of some altruistic agents, for whom
the cost of cooperation is extremely low because of their preference of cooperation, even non-
reciprocated or unilateral, over a situation of no cooperation in any interaction. The rationale
for assuming the presence of altruists comes from the widely acknowledged role of altruists
in evolution of cooperation in not just social sciences literature, but also in the literature
of cognitive sciences and biology2. The rationale for assuming that a player’s mutually
cooperative links generate higher value if her trustworthiness to her interacting partners is
higher, and the rationale for choosing to define trustworthiness or reputation as a measure
of one’s instances of cooperation with other agents is motivated by the idea of indirect
reciprocity in social sciences literature3 which states that individuals often have incentive

i.e., the more uncertainty that a player has about the actions of the other player, the more likely she is to
choose the action corresponding to the risk dominant equilibrium.

2Lehman and Keller (2006), Carpenter and Myers (2010) and Telmo (2011) are a few examples in the
wide literature analysing the nature of human altruism and its role in the evolution of cooperation under
various conditions.

3See Semmann, Krambeck and Milinski (2004), Engelmann and Fischbacher (2009), Sylwester and
Roberts (2010) and Marsh (2018) for analysis of the role of indirect reciprocity and reputation building
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to cooperate in some instances without expecting reciprocity, in the expectation that their
cooperative actions enhance their reputation scores, causing other agents to cooperate with
them because of their high reputation.

With these features of altruism and indirect reciprocity or reputation building, we apply
our model to analyse the process of evolution of cooperative networks starting from a situa-
tion of no cooperation, through repeated interaction of agents who myopically best respond in
each period. The model of cooperative network formation proposed in this paper attempts to
contribute to the larger literature of strategic network formation for which Aumann and My-
erson (1988) acted as pioneers by being the first to model network formation explicitly as a
game. The literature progressed with cooperative network formation being largely modelled
as a bilateral process, since the general context of cooperation lends itself to the assumption
that meaningful cooperation requires agreement of both interacting parties to cooperate.
Note that this model is in agreement with this understanding; in the absence of network
effects, individuals do benefit only from coordinated or mutual cooperation. However, this
model goes one step further to recognize from literature the role of indirect reciprocity in
evolution of cooperation and includes the possibility of extending and sustaining unilat-
eral or non-reciprocated cooperation due to the incentives of reputation building. Thus the
contribution of this model is that it allows for the possibility of forming links of unilateral
cooperation by specifying a payoff function wherein such links can potentially contribute
positively to utility. Our assumption that the value of links of cooperation is enhanced by
the embeddedness of these cooperative links in the network conforms to a well accepted phe-
nomenon in social sciences, with substantial research in sociology arguing that embeddedness
of social relationships enhances trust and confidence in the integrity of transactions in these
relationships. In the literature of social networks one of the earliest emphasis on this was
laid by Granovetter (1985), who articulated the importance of embeddedness of cooperative
interactions in the social structure in explaining the evolution of cooperation by observing
that the on-going networks of social relations between people discourage malfeasance.

To analyse the evolution of cooperative networks, we assume that myopically best responding
agents repeatedly interact with each other. The dynamics of this process is propelled by the
presence of altruists and the incentive for reputation building that other agents have. In fact
such dynamics provides a framework within which the impact of external perturbations on
cooperative structures can be analysed. The process of dynamics proposed here differs from
earlier dynamic models in the context of cooperative network formation in that it allows
the system to converge to equilibrium through a process of best response dynamics instead
of pairwise deviations. Here the process of convergence happens through independently
considered and optimised unilateral deviations and the system hence converges to a network
with an underlying strategy profile that is Nash equilibrium. Earlier works by Watts and
Jackson in this context typically assume4 that in the process of convergence to a steady
state while links of cooperation may be severed unilaterally, they can be formed only with

in situations of cooperation in various contexts.
4See Watts(2001), Jackson and Watts (2001, 2002a, 2002b). The different models considered by them

add incrementally to the complexity of the process, and in Jackson and Watts (2002b) the idea of reputation
is incorporated by allowing players to choose whether to add or sever links based on their (prospective)
partner’s past behaviour.
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mutual agreement. This assumption is specific to the context of these models, where links
of cooperation are of one type only and are formed by mutual agreement. Thus a steady
state or equilibrium for these models has the property that no single agent wants to sever
a link unilaterally, and no pair of nodes wants to form a link with each other (when none
exists) while simultaneously (and optionally) severing their other links. That is, the steady
state or equilibrium network converged to is a pairwise stable network. Unilateral deviations
underlying the dynamics in our proposed model is not intuitively unappealing since agents
have incentives to extend unilateral cooperation to each other. This gives the model the
features of an agent based model which can be used to analyse situations where agents respond
to individual incentives without the need to negotiate with each other before deciding on
their choice of extending cooperation.

The rest of the paper is organized as follows. The next section formally sets up the model
and proceeds to analyse the evolution process. We find that under various conditions on
the composition of population (depending on costs of cooperation), five different kinds of
equilibria emerge. The third section discusses some necessary conditions on Nash equilibria
that may emerge from different processes of convergence, and the paper concludes with a
discussion on our results, the limitations of the model and further extensions that may be
explored.

2 Evolution of cooperation

2.1 The model

N = {1, 2, 3, .....n} with n ≥ 3 is a finite set of all players.
In any time period t, each player i chooses an action atij for any other player j such that
(∀i ∈ N)(∀j ∈ N − {i})(atij ∈ {α, β}), where α refers to the act of cooperating while β
is the act of refraining from cooperation. Any player i’s strategy in time period t is de-
noted by sti = (ati1, a

t
i2 . . . a

t
ii−1, a

t
ii+1, . . . .a

t
in). A strategy profile in period t is of the form

(st1, s
t
2, . . . s

t
n). Note that the cooperative network results from every agent’s action choices in

a given strategy profile. The formalization of link formation and neighbourhoods is as follows.

atij = α and atji = α←→ i and j share a mutually cooperative tie in period t.
(also referred to as an α− α tie)
Or, i ∈ Pj(s) and j ∈ Pi(s)

atij = α ∧ atji = β ←→ i is in unilateral cooperation with j in period t.
(also referred to as an α− β tie between i and j)
Or, j ∈ Ei(s)

atij = β ∧ atji = β ←→ i and j share a non cooperative tie in period t.
(also referred to as a β − β tie)

Further, Tij(s) = Pj(s)∩(Pi(s)∪Ei(s)) and tij(s) = |Tij(s)| is i’s trustworthiness as perceived
by j; which is the instances that j can observe, through links of mutual cooperation, in which
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i extends cooperation to other agents. Pij(s) = Pji(s) = Pi(s) ∩ Pj(s) is the set of common
mutually cooperative neighbours that agents i and j share, with pij(s) = pji(s) = |Pij(s)|.
Note that for any strategy profile and pair of nodes, tij(s) ≥ pij(s)

The payoff matrix of the base game (excluding network effects) is as follows.

Player j

α β

Player i
α (x, x) (z, y)

β (y, z) (0, 0)

where x > y > 0 > z ensures that the payoffs are consistent with the coordination game and
zero utility is attributed to the situation where both agents refrain from cooperating with
each other. Finally, cooperation is costly to extend and sustain. For simplicity we assume
that the cost of extending cooperation, whether reciprocated or non-reciprocated (unilateral)
is the same. For any agent i, a cost ci is incurred in every interaction where i cooperates.
Unless agents are altruistic, it can be reasonably assumed that sustaining unilateral coop-
eration in absence of network effects of reputation is sub-optimal and ci > z. For altruistic
agents we assume ci < z.

Then, the utility that agent i derives from strategy profile s is given by:

ui(s) =
∑

j∈Pi(s)

(tij(s) + 1)x+
∑

j∈Ei(s)

z +
∑

j∈N |i∈Ej(s)

y −
∑

j∈Pi(s)∪Ei(s)

ci

Note that the value of every link of mutual cooperation is enhanced by a factor of one’s own
trustworthiness as perceived by the interacting partner. It is this utility enhancing impact
of network based trustworthiness on links of mutual cooperation that brings in network
effects into the model. For example, in the figure below (where darker links are links of
mutual cooperation and the directed link is a link of unilateral cooperation), agent j gets
communication (through links of mutual cooperation) about i’s cooperation in two more
instances, and hence i’s reputation or (network based) trustworthiness as perceived by j is
tij(s) = 2. On the other hand, j’s reputation as perceived by j is tji(s) = 3.
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The network effects of network based trustworthiness ensure that the incentive structure
faced by any individual is not reduced to one where all interactions with other agents are
independently considered.

At the start of analysis, note that links of unilateral cooperation contribute to utility only
through enhancing trustworthiness in other interactions, while links of mutual cooperation
give a direct utility and also contribute to enhancing trustworthiness in other interactions
with common mutual parters. Then, any change in utility from a unilateral deviation will
comprise of terms for both these effects of the deviation. For example, the following expres-
sions give the expected change in utility from unilateral deviations comprising of single action
changes. Note that the notation 4ui is used throughout the paper in a context specific way
to express the expected change in utility from any unilateral deviation being considered.

If, from strategy profile s, agent i unilaterally withdraws cooperation from an α − α link
with j, then 4ui = ci + y − (tij(s) + 1)x− pij(s)x ...(i)

If, from strategy profile s, agent i unilaterally offers cooperation to j (previously engaged in
a β − β link), then 4ui = −ci + z + pij(s)x ...(ii)

If, from strategy profile s, agent i reciprocates cooperation to j (previously engaged in a
β − α link), then 4ui = −ci − y + (tij(s) + 1)x+ pij(s)x ...(iii)

If, from strategy profile s, agent i withdraws cooperation from an α − β link with j, then
4ui = ci − z − pij(s)x ...(iv)

2.2 Evolution

The process of network formation starts after agents start interacting from an initial state of
zero cooperation. Agents repeatedly interact over discrete time periods with everyone else,
myopically best responding to the strategy profile resulting from the period.
That is, the system progresses with agents unilaterally deviating in every period to best
respond to the last period’s actions of other players. It converges to a Nash equilibrium,
or simply an equilibrium when two subsequent periods see no unilateral deviation by any
agent. In this section, we attempt to characterize all possible Nash equilibria that can emerge
from this process, in absence of external perturbations or errors in rational decision making.
In analysing the process of convergence to equilibrium, the following categorization of the
population is useful.

A = {i ∈ N |ci ≤ z} and |A| = a, where 2 ≤ a ≤ n− 2
F = {i ∈ N |ci > z ∧ ci ≤ ax− y} and |F | = f
D = {i ∈ N |ci > z ∧ ax− y < ci} and |D| = d

Note that agents in A are altruists who prefer to extend cooperation, even unilaterally, over
being in a situation of mutual non cooperation with other agents. The rest of the population
is characterized on the following basis. The set F consists of all the agents for whom cost of
cooperation is low enough that if there exists a clique (completely connected set of agents)
comprising of a or more agents who are all extending cooperation to them, then they have
incentive to reciprocate cooperation to all the agents in this clique. Agents in D, on the other
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hand, do not have incentive to reciprocate cooperation in such a situation. This behaviour
of non altruistic agents in F and D is discussed in detail later.

The presence of altruists is crucial to starting off the process of cooperative link formation
in this evolution process; in fact, there must be at least two such agents. However, assuming
a > n − 2 (or a ≥ n − 1) means that the entire population except one individual consists
of altruists, contradicting the incentive mechanism underlying situations that the model
attempts to analyse. Further, the number of altruists are assumed to be atleast two so
that analysis can focus on non trivial cases5. It is also assumed that when individuals are
indifferent between cooperating and not cooperating, they choose to cooperate. Although
this is a simplifying assumption for the purpose of the analysis (since it allows us to infer
precisely the resulting strategy profile at the end of a period and best responses for the
next period can be unambiguously analysed) it is also a reasonable assumption about social
behaviour of humans, given that strong tendencies of reciprocity in human social behaviour
is well documented. As the start of analysis, note the following lemmas.

Lemma 1:
(
∀t ≥ 1

)(
∀i ∈ A

)[
(∀j ∈ N − {i})(atij = α) is the best response to period t− 1

]
That is, the unique best response for altruists in every period starting from the first period
onwards is to extend cooperation to everyone else in the population.

This lemma follows directly from the fact that in any interaction, altruists prefer being in
non-reciprocated cooperation over being in a situation of no cooperation. Therefore altruists
do not depend on network effects of trustworthiness enhancement to engage in cooperation,
which means that they extend cooperation to all other agents in the very first period that
interactions begin, and do not withdraw cooperation from anyone through the entire process
of convergence to equilibrium.

The next lemma is applicable to agents in F , for whom z < ci ≤ ax− y.

Lemma 2: Suppose ∃M ⊂ N such that |M | ≥ a and (∀j ∈M)(∀k ∈M − {j})(atjk = α).

Then,
(
∀i ∈ F

)[(
∀j ∈M

)(
atji = α

)
−→

(
∀j ∈M

)(
at+1
ij = α in i’s best response in t+ 1

)]
That is, if there is a set of agents atleast as many as a, who are engaged in ties of mutual
cooperation with each other and offering cooperation to i ∈ F in a period t, then i’s best
response in period t+ 1 involves cooperating with all agents in this set.

To prove this lemma, we consider an arbitrary M ⊂ N of size atleast as much as a such
that all agents in M are engaged in ties of mutual cooperation with each other and offering
cooperation to i ∈ F in period t. Of all of these agents, i may be refraining from cooperation
with some of them in period t (call this set M1 ⊆ M) and i may be already cooperating
with some of them in period t (call this set M2 ⊆ M). Then, we consider an arbitrary
unilateral deviation by i wherein i changes her actions with respect to some of these agents.

5If a = 1 and for all non altruistic agents, ci > x − y, then no links of mutual cooperation are formed
through repeated interaction of these agents because non altruistic agents have no incentive to reciprocate
to the single altruist. Further, we want to be able to assume ci > x− y for non altruistic agents because it
is for this cost range that network effects play a role in sustaining cooperation.
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In the most general form of deviation, i can reciprocate cooperation to k1 agents in M1 and
withdraw cooperation from k2 agents in M2. To prove our lemma, we show that the change
in utility expected from this unilateral deviation is maximised when k1 takes the maximum
possible value and k2 takes the minimum possible value. This means that i’s best response
to period t would involve reciprocating cooperation to all agents in M1 and continuing to
cooperate with all agents in M2, thus cooperating with all agents in M in period t+ 1. The
formal proof is as follows.

Proof: Suppose (∃M ⊂ N)(|M | ≥ a ∧ (∀i ∈M)(∀j ∈M − {i})(atij = α))
and (∃i ∈ F )(∀j ∈M)(atji = α)
Denote |M | with m. Without loss of generality, we assume:
M1 ⊆M = {j ∈M |atij = β} |M1| = m1 ≤ m
M2 ⊆M = {j ∈M |atij = α} |M2| = m2 ≤ m

Consider the arbitrary unilateral deviation in which i switches to reciprocate cooperation to
k1 agents in M1 and withdraw cooperation from k2 agents in M2. To calculate the change
in utility from this deviation, we first observe that expression for total utility that i gets
from a strategy profile s is additively separable as a sum of net utility that i receives from
every single link that she participates in. Consider the following calculation of the change
in utility expected from this unilateral deviation. We make use of following notation.

uij(s
0) is the net utility that i received from a link with j before the unilateral deviation.

uij(s
′) is the net utility that i gets from a link with j after the unilateral deviation.

u0i is i’s utility before the deviation and u′i is i’s utility after the deviation.

Now, u0i = m1y −m2ci +
∑
j∈M2

(tij(s
0) + 1)x+

∑
j∈N−M

uij(s
0),

where
∑
j∈M2

(tij(s
0) + 1)x ≥ m2

2x because because i has a minimum trustworthiness of

(m2 − 1) for each of m2 the cooperative links that she is engaged in, since all the m2 agents
are linked with each other in ties of mutual cooperation.

Further, u′i = (m1 − k1 + k2)y − (m2 − k2 + k1)ci +
∑

j∈M |a′ij=α
(tij(s

′) + 1)x+
∑

j∈N−M
uij(s

′),

where
∑

j∈M |a′ij=α
(tij(s

′) + 1)x ≥ (m2 − k2 + k1)
2x by the same argument as above.

Thus 4ui ≥ (k1 − k2)[x(2m2 + k1 − k2)− (y + ci)] +
∑

j∈N−M
uij(s

′)−
∑

j∈N−M
uij(s

0)

Consider the expression (k1 − k2)[x(2m2 + k1 − k2)− (y + ci)].
This equals (k1−k2)[m2x− (y+ ci) +k1x+ (m2−k2)x], where k1x+ (m2−k2)x > 0 because
m2 ≥ k2. If m2x − (y + ci) > 0, this expression is strictly increasing in k1 and strictly
decreasing in k2, hence is maximised by k∗1 = m1 and k∗2 = 0. If m2x− (y+ ci) < 0 This may
be (locally) maximized in two ways :

k1 = 0 and k2 = m2 gives a locally maximised value equal to −m2[m2x− (y + ci)]
k1 = m1 and k2 = 0 gives a locally maximised value equal to m1[mx+m2x− (y + ci)]
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Suppose −m2[m2x− (y + ci)] ≥ m1[mx+m2x− (y + ci)].
→ m(y + ci) ≥ [m1m+m2(m1 +m2]x
→ m(y + ci) ≥ m2x −→ mx− (ci + y) ≤ 0
This is a contradiction because m ≥ a ∧ ax− ci − y > 0 −→ mx− ci − y > 0.
Thus k∗i = m1 and k∗2 = 0 maximises (k1−k2)[x(2m2 +k1−k2)− (y+ ci)]. Further, these

values also ensure that
∑

j∈N−M
[uij(s

′)− uij(s0)] is non negative and maximised6.

Thus, agent i in F reciprocates cooperation to all the agents in M with whom she was earlier
not cooperating, and does not withdraw cooperation from any agents in M with whom she is
cooperating. This means that in i’s best response, she reciprocates cooperation to all agents
in M , and lemma 2 is proved. �

Thus we find in the presence of a set of m ≥ a agents who are completely connected by ties
of mutual cooperation and offering cooperation to i ∈ F , i’s best response should involve
reciprocating cooperation to all of them. This also means that if i ∈ F is already engaged
in mutual cooperation with all agents in M , she has no incentives to withdraw cooperation
from any of them. This lemma is useful in considering optimal choice of agents in F in
subsequent analysis.

Given the way that the sets A,F and D are defined, the first two periods after the initial
period play out in the following way: in the first period, all agents in A extend cooperation
to all other agents and end up sharing links of mutual cooperation with each other. All
other agents continue to refrain from cooperation. In the second period, all agents in F
reciprocate cooperation to all agents in A, while refraining from cooperation with respect
to all other agents (including other agents in F ). Agents in D continue refraining from any
cooperation even in their interactions with altruists. In the third period, agents in F may
consider extending cooperation to other agents in F (while still refraining with respect to
agents in D), and agents in D may now consider reciprocating cooperation to the altruists
along with extending cooperation to agents in F for enhanced trustworthiness. Whether or
not agents in F will actually cooperate with each other and whether or not agents in D will
engage in any cooperative activity depends on various conditions.

Thus we find that from the third period onwards, the best response dynamics becomes
contingent on various cost conditions and size of the three types of subsets of the population.
These conditions can be broadly divided into two categories: when z ≤ −y and when z > −y.

When z ≤ −y, we find that agents in D have no incentive to cooperate in any interaction
under any circumstance. Any agent in i ∈ F extends cooperation to other agents in F
depending on the relation between her cost of cooperation ci and the expression ax + z.
If ax + z is strictly less than the cost of cooperation for all agents in F , then no further
cooperation is extended and the system witnesses a convergence to equilibrium with no
further activity after the second period. However, if there are some agents in F for whom
cost of cooperation is lesser than ax + z, then these agents extend cooperation to all other

6Forming new links of mutual cooperation without breaking off any links of mutual cooperation can only
increase the payoff from other links through reputation gains.
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agents in F , who find it in their interest to reciprocate in the next period. This may generate
incentives for even more agents in F to cooperate with each other, till the point where only
a subset of F may remain uncooperative towards each other. Alternatively, it may even
happen that all agents in F cooperate with each other in equilibrium. This is also the
equilibrium that is converged to when ax + z is less than cost of cooperation for all agents
in F . Note however that through this process at no point do agents in F have an incentive
to cooperate with agents in D and at no point do the latter have incentive to reciprocate
cooperation to altruists or to cooperate with anyone else.

When z > −y, agents in F have incentive to cooperate with each other in the third period.
Further, agents in D may also have incentive (in the third period) to engage in cooperative
activity by reciprocating to altruists along with extending cooperation to agents in F for
the purpose of reputation building. We find that whether or not an agent i in D finds it
optimal to do so depends on the sign of the expression a(ax − ci − y) + f(ax + z − ci). If
this expression is negative for all agents in D, agents in D continue to refrain from coop-
eration and we have an equilibrium where agents in A ∪ F engage in mutual cooperation
with each other while altruists sustain unilateral cooperation with agents in D. However,
if a(ax− ci − y) + f(ax + z − ci) is positive for some agents in D, these agents reciprocate
cooperation to all altruists and extend cooperation to all agents in F , who reciprocate in
the subsequent period. This further gives these agents in D the incentive to cooperate with
each other as well, and may even give incentive to some other agents in D to begin engaging
in cooperative activity by reciprocating cooperation to altruists while extending coopera-
tion to agents in F and those agents in D who are engaged in mutually cooperative links
with agents in A ∪ F . This process may continue and reach an equilibrium where only a
few agents in D remain refraining from cooperation. Alternatively, it may converge to an
equilibrium where all agents engage in mutual cooperation with all other agents, yielding a
complete network of mutual cooperation. This is also the equilibrium that is converged to
when a(ax− ci − y) + f(ax+ z − ci) is positive for all agents in D.

Thus we find that five different kinds of equilibria emerge under six categorizations of cost
conditions. We elaborate our analysis below; the structure of our analysis of the evolution
and convergence process is as follows. Lemma 1 ensures that agents in A best respond
by cooperating in all their interactions with other agents in every period; we need not
consider unilateral deviations for these agents. Then, in each period a general unilateral
deviation from the strategy profile of the previous period is considered for arbitrary agents
in sets F and D. A general unilateral deviation can be a combination of many actions,
and the specificities of those actions will yield an expected change in utility. To arrive at
optimal unilateral deviation or best response of an agent, we find the specific actions that
will maximise this expected change in utility. The best responses of all agents in any period
give the strategy profile for that period, and in the next period the process of calculating
best responses is repeated again. The following subsections discuss the formal proofs of the
process described above.
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2.2.1 First period

Consider i ∈ N − A. If i extends α to m agents in N − {i}, where 0 ≤ m ≤ n − 1 then
4ui = −mci +mz
Since (∀i ∈ N − A)(ci > z), 4ui is negative for any m > 0 and is maximised at m∗ = 0
Thus we have (∀i ∈ N − A)(∀j ∈ N − {i})(a1ij = β)
Also by lemma 1, (∀i ∈ A)(∀j ∈ N − {i})(a1ij = α). This remains true of every subsequent
period as well.

2.2.2 Second period

Consider i ∈ F . By lemma 2, these agents must reciprocate cooperation to all altruists,
and we have (∀i ∈ F )(∀j ∈ A)(a2ij = α). Further, offering α to other agents in N − A
yields neither direct nor reputation related benefit to i, since ci > z and there are no bene-
fits of reputation gain (agents in N − A are not connected in α − α ties to agents in A at
the end of Period 1). Thus we have (∀i ∈ F )

[
(∀j ∈ N−A−{i})(a2ij = β)∧(∀j ∈ A)(a2ij = α)

]
Consider i ∈ D. For these agents, a general unilateral deviation may involve a combination
of the following actions: (i) switching to reciprocate α to k agents in A (0 ≤ k ≤ a), and (ii)
switching to offer α to m agents in N − A− {i} (0 ≤ m ≤ f + d− 1)

For the same reasons as for agents in F , best response can only include reciprocating α
to k agents in A (0 ≤ k ≤ a). Such a unilateral deviation yields expected change in utility
4ui = −kci − ky + k(k)x = k(kx− ci − y)

Now, (∀i ∈ D)(ci > ax− y)→ (∀k ≥ 1)(kx− ci− y ≤ ax− ci− y < 0). Thus this change
in utility is maximised by k∗ = 0 and agents in D do not deviate in this period. Thus we
have (∀i ∈ D)(∀j ∈ N − {i})(a2ij = β)

Figure 1 illustrates the strategy profile that emerges at the end of the second period, where
links of mutual cooperation are represented as thicker links and links of unilateral links are
directed links. Also, agents in A are denoted by white nodes, agents in F by grey and agents
in D by black nodes. Subsequent diagrams also adopt this representation.

Figure 1: Strategy profile at the end of second period
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2.2.3 Third period

In the third period, first note that agents in A and F do not switch to withdraw cooperation
from any interaction, by lemma 1 and 2 respectively. Further, any agent in F may now have
incentive to switch to offer cooperation to other agents in F , since it can potentially increase
utility by enhancing trustworthiness in interactions with agents in A. Note that extending
cooperation to agents in D can not be optimal for agents in F , because it yields neither
direct benefits nor benefits of reputation enhancement (since ci > z and these agents are not
connected in α− α ties to agents in A at the end of Period 2)

On the other hand, any agent in D whose high cost of cooperation did not permit her
to reciprocate cooperation to any altruists in the second period might now consider the
possibility of doing so in combination with extending cooperation to agents in F , since it
enhances her reputation and may make the deviation worthwhile. However, they have no
incentive to extend cooperation to other agents in D. Let us consider the choices faced by
agents in F and D.

Suppose i ∈ F unilaterally deviates in the third period to extend α to m agents in F − {i}
(0 ≤ m ≤ f − 1). Then the expected change in utility is
4ui = −mci +mz + axm = m(ax− ci + z)

Whether or not this is positive depends on the relation between ci and ax+ z.
If this change in utility is positive for any agent i, then she extends cooperation to all other
agents in F in the third period; otherwise she refrains from cooperation with other agents
in F . Thus we have a decision making criterion for agents in F in the third period. Various
possibilities arising from this are discussed subsequently. Now we consider agents in D.

Suppose i ∈ D unilaterally deviates in the third period by switching to reciprocate α to k
agents in A (0 ≤ k ≤ a) and switching to offer α to m agents in F (0 ≤ m ≤ f). Then the
expected change in utility is
4ui = k(k +m)x− k(ci + y) +m(z − ci)
Let (k∗,m∗) be the values of k and m that maximise 4ui. Note that this maximised

value must be non negative, since 4ui = 0 for k = 0 and m = 0.

Claim 1: (∀i ∈ D)[ Either (k∗,m∗) = (0, 0) or (k∗,m∗) = (a, f)].

Proof: If k∗ = 0 and m∗ ≥ 1, then 4ui = −m∗(ci − z) < 0 (since ci > z)
Thus k∗ = 0 −→ m∗ = 0 and m∗ ≥ 1 −→ k∗ ≥ 1

If m∗ = 0 and k∗ ≥ 1, then 4ui ≥ 0 −→ (k∗)2x− k∗(ci + y) ≥ 0
−→ k∗x− y ≥ ci
Now, a ≥ k∗ −→ ax− y ≥ k∗x− y
−→ ax− y ≥ ci. This contradicts with (∀i ∈ D)(ci > ax− y).
This implies that 4ui|m∗=0,k∗≥1 < 0
Thus m∗ = 0 −→ k∗ = 0 and k∗ ≥ 1 −→ m∗ ≥ 1

Hence m∗ = 0←→ k∗ = 0 and k∗ ≥ 1←→ m∗ ≥ 1 . . . (v)
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Suppose m∗ ≥ 1 ∧ k∗ < a
Then, 4ui(k∗,m∗) ≥ 0 −→ k∗(k∗ +m∗)x− k∗(ci + y) +m∗(z − ci) ≥ 0

→ (k∗ +m∗)x− m∗

k∗
(ci − z) ≥ (ci + y) . . . (vi)

Also, 4ui(k∗,m∗) ≥ 4ui(a,m∗) ((k∗,m∗) maximises 4ui and k∗ < a)
→ k∗(k∗ +m∗)x− k∗(ci + y) +m∗(z − ci)− a(a+m∗)x+ a(ci + y)−m∗(z − ci) ≥ 0
→ k∗(k∗ +m∗)x− a(a+m∗)x+ (a− k∗)(ci + y) ≥ 0
→ x[(k∗ − a)(a+m∗ + k∗)] ≥ (k∗ − a)(ci + y)
Now, (k∗ − a) ≤ 0→ x[(a+m∗ + k∗)] ≤ (ci + y) . . . (vii)

From (vi) and (vii), we have:

x[(a+m∗ + k∗) ≤ (k∗ +m∗)x− m∗

k∗
(ci − z)

→ ax+ m∗

k∗
(ci − z) ≤ 0. This contradicts with ax > 0 ∧ ci > z.

Hence m∗ ≥ 1 −→ k∗ = a . . . (viii)

Suppose k∗ = a and m∗ < f
Then, by definition we have 4ui(a,m∗) ≥ 4ui(a, f)
→ a(a+m∗)x− a(ci + y) +m∗(z − ci)− a(a+ f)x+ a(ci + y)− f(z − ci) ≥ 0
→ a(m∗ − f)x+ (m∗ − f)(z − ci) ≥ 0
→ (m∗ − f)(ax+ z − ci) ≥ 0
Since m∗ < f , this implies that (ax+ z − ci) ≤ 0. . . . (ix)

Also, 4ui(k∗ = a,m∗) > 0→ a(a+m∗)x− a(ci + y) +m∗(z − ci) ≥ 0
→ a2x− am∗x− aci − ay +m∗z −m∗ci ≥ 0
→ a(ax− ci − y) +m∗(ax+ z − ci) ≥ 0
From (ix), m∗(ax+ z − ci) ≤ 0. Thus a(ax− ci − y) ≥ 0.
→ ax− y ≥ ci. This contradicts with (∀i ∈ D)(ci > ax− y).
Hence k∗ = a −→ m∗ = f . . . (x)

From (v), (viii) and (x) we can deduce:
(∀i ∈ D)[ Either (k∗,m∗) = (0, 0) or (k∗,m∗) = (a, f)].

Claim 2:
(
∀i ∈ D

)(
(k∗,m∗) = (a, f) if and only if a[ax− ci − y] + f [ax + z− ci] ≥ 0

)
Proof: If a[ax − ci − y] + f [ax + z − ci] < 0, then the change in utility for agent i from
choosing k = a and m = f is negative, thus (k∗,m∗) 6= (a, f). Further, if (k∗,m∗) 6= (a, f),
then it must be the case that (k∗,m∗) = (0, 0) and 4ui(a, f) < 4ui(0, 0). This implies that
a[ax− ci − y] + f [ax+ z − ci] < 0.

Note that by assumption, (∀i ∈ D)(a[ax − ci − y] < 0). The possibility of an optimal
deviation of (k∗,m∗) 6= (0, 0) is made feasible only when z > −y such that ci < ax + z and
hence f [ax+ z − ci] > 0.

Thus we have a decision making criterion for agents in D in the third period. Clearly, the
analysis of the evolution process from third period onwards becomes contingent on various
cost conditions. Broadly, we divide all possible cases into two categories, when z ≤ −y and
when z > −y.

13



2.2.4 When z ≤ −y

Case 1: When z ≤ −y and (∀i ∈ F )(ax+ z < ci)
First note that for any agent i ∈ D, z ≤ −y −→ ax + z ≤ ax − y < ci. This implies

that f [ax + z − ci] < 0, which further implies that a[ax − ci − y] + f [ax + z − ci] < 0.
Thus when z ≤ −y, the only optimal deviation for agents in D in Period 3 is given by
(k∗,m∗) = (0, 0), that is, agents in D do not deviate from the third period and we have
(∀i ∈ D)(∀j ∈ N − {i})(a3ij = β).

Secondly, for any agent i ∈ F we have ax+z < ci, which means that if i deviates to extend
cooperation to m other agents in F , the expected change in utility 4ui = m(ax− ci + z) is
negative for all non zero values of m and is maximised by m∗ = 0. Thus agents in F also do
not deviate in Period 3, and we have

(
∀i ∈ F

)[
(∀j ∈ A)(a3ij = α)∧ (∀j ∈ D∪F −{i})(a3ij =

β)
]
. Thus we reach an equilibrium after the second period itself, and we have the following

proposition.

Proposition 1 When z ≤ −y and (∀i ∈ F )(ax + z < ci), the system converges to an
equilibrium strategy profile s∗ where:

(∀i ∈ A)(∀j ∈ N − {i})(a∗ij = α)

(∀i ∈ F )[(∀j ∈ A)(a∗ij = α) ∧ (∀j ∈ N − A− {i})(a∗ij = β)]

(∀i ∈ D)(∀j ∈ N − {i})(a∗ij = β)

Denote this equilibrium as e1.

Case 2: When z ≤ −y, (∃i ∈ F )(ax+ z < ci) and (∃j ∈ F )(ax+ z ≥ cj)
Optimal behaviour of agents in D remains the same as in Case 1, which is that they

continue to refrain from cooperating with everyone.
Consider i ∈ F . We saw that if i offers α to m agents in F − {i} (0 ≤ m ≤ f − 1), then

4ui = m(ax−ci+z). Now, (ax−ci+z) ≥ 0 −→ m∗ = f−1 and (ax−ci+z) < 0 −→ m∗ = 0.
Let F1 ⊂ F = {i ∈ F |(ax− ci + z) ≥ 0} and F2 ⊂ F = {j ∈ F |(ax− cj + z) < 0}. Then

we have the following at the end of third period.(
∀i ∈ F1

)[
(∀j ∈ A ∪ F − {i})(a3ij = α) ∧ (∀j ∈ D)(a3ij = β)

](
∀i ∈ F2

)[
(∀j ∈ A)(a3ij = α) ∧ (∀j ∈ N − A− {i})(a3ij = β)

]
Figure 2 displays a possible strategy profile at the end of the third period.

Now, in the fourth period the incentive structures for i ∈ A ∪D remain unchanged in this
case and they do not deviate from their third period strategies. For agents in F , since agents
in D are still unconnected with α−α ties to agents in A, their best response action towards
them also remains unchanged (no direct or reputation related utility gain possible).

First consider i ∈ F1. By lemma 2, she has no incentive to change their actions with respect
to j ∈ A ∪ F1 in the fourth period. If i switches to offer β to 0 ≤ k ≤ f2 agents in F2,
expected change in utility 4ui = kci−kz−akx = −k(ax− ci + z) is negative for any k ≥ 0.

Thus agents in F1 do not deviate in the fourth period.
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Figure 2: Third period when z ≤ −y, (∃i ∈ F )(ax+ z < ci) and (∃j ∈ F )(ax+ z ≥ cj)

Now consider i ∈ F2. By lemma 2, i’s best response actions towards agents in A remain
unchanged in the fourth period. An optimal unilateral deviation may involve (i) reciprocating
α to 0 ≤ k ≤ f1 agents in F1 and (ii) offering α to 0 ≤ m ≤ f2 − 1 agents in F2, giving
expected change in utility
4ui = −kci −mci − ky +mz + kx(a+ k) + akx = k[x(2a+ k − ci − y)] +m(z − ci)
Now, ci > z −→ m∗ = 0 and ci < ax− y −→ ci < 2ax+ kx− y −→ k∗ = |F1| = f1
Thus

(
∀i ∈ F2

)[
(∀j ∈ A ∪ F1)(a

4
ij = α) ∧ (∀j ∈ D ∪ F2)(a

4
ij = β)

]
In the fifth period as already argued, agents in A∪D∪F1 do not deviate from their strategies
from the previous period. Consider i ∈ F2. By lemma 2, i’s best response actions towards
agents in A ∪ F1 remain unchanged. Her actions towards j ∈ D also remain unchanged, as
previously argued. An optimal unilateral deviation may involve offering α to 0 ≤ k ≤ f2− 1
agents in F2 − {i}, giving change in utility
4ui = −kci + kz + kx(a+ f1) = k(x(a+ f1)− ci + z)

Now, ((a+ f1)x− ci + z) ≥ 0 −→ k∗ = f2 − 1 and ((a+ f1)x− ci + z) < 0 −→ k∗ = 0.

Let F21 ⊂ F2 = {i ∈ F2|((a+f1)x−ci+z) ≥ 0} and F22 ⊂ F2 = {i ∈ F2|((a+ f1)x− ci + z) < 0}.
Then we have:(
∀i ∈ F21

)[
(∀j ∈ A ∪ F − {i})(a5ij = α) ∧ (∀j ∈ D)(a5ij = β)

](
∀i ∈ F22

)[
(∀j ∈ A ∪ F1)(a

5
ij = α) ∧ (∀j ∈ D ∪ F2)(a

5
ij = β)

]
The argument behind this process is as follows. In this case there are some agents in F for
whom cost conditions are such that they benefit from unilaterally extending cooperation to
all other agents in F , because of the reputation related utility that it brings them by raising
their trustworthiness in their interactions of mutual cooperation with agents in A. When
these agents (whose cost conditions allow them to invest in reputation building) offer links
to all other agents in F in the third period, they end up with links of mutual cooperation
with each other and unilateral cooperation with remaining agents in F . In the fourth period,
these links are reciprocated and now some of the remaining agents may also find it profitable
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to extend links of cooperation to each other since the benefits of reputation building accrue
on not only links of mutual cooperation with agents in A, but also some links within F .
This process continues such that in every period, more agents in F become connected in
α − α ties with each other. In fact, this process may converge to an equilibrium where all
agents in F mutually cooperate with each other (equilibrium e3 defined below). It may also,
however, converge to an equilibrium where some agents in F remain uncooperative towards
each other. In both cases, agents in D have no incentives to extend any links of cooperation
(equilibrium e2 defined below).

Suppose this process converges to an equilibrium such that there are still some agents in F
who are not connected in α− α ties with each other and we have the following equilibrium.

(∀i ∈ A)(∀j ∈ N − {i})(a∗ij = α)
(∀i ∈ D)(∀j ∈ N − {i})(a∗ij = β)
Fk = {i1, i2, i3, ....ik} ⊂ F is such that:
(∀i ∈ F − Fk)[(∀j ∈ A ∪ F − {i})(a∗ij = α) ∧ (∀j ∈ D)(a∗ij = β)]
(∀i ∈ Fk)[(∀j ∈ A ∪ F − Fk)(a∗ij = α) ∧ (∀j ∈ Fk ∪D − {i})(a∗ij = β)]

Since this strategy profile is an equilibrium, agents in Fk must have no incentive to engage
in any further cooperative activity. Suppose i ∈ Fk deviates to offer α to m agents in Fk−{i},
then the expected change in utility from this deviation should be negative:
4ui = −mci +mz +mx(a+ f − k) < 0→ x(a+ f − k) + z < ci
→ (∀i ∈ Fk)(x(a+ f − k) + z < ci)

Alternatively, this process may converge to an equilibrium where all agents in F are linked
in ties of mutual cooperation to each other. Note that through the entire process, agents
in F do not extend cooperation to agents in D and agents in D continue refraining from
cooperation with respect to everyone else. Thus we have the following proposition.
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Proposition 2 When z ≤ −y, (∃i ∈ F )(ax+ z < ci) and (∃j ∈ F )(ax+ z ≥ cj), the system
converges to either of the following equilibria.

1) Suppose there exists an integer m < f and a subset Fm = {i1, i2, i3, . . . im} ⊂ F such that
(∀i ∈ Fm)(x(a + f − m) + z < ci). Let k be the largest possible value of this integer and
Fk ⊂ F = {i1, i2, i3, . . . ik} be the largest possible set of this kind. Under these conditions
the system converges to the following equilibrium s∗ :

(∀i ∈ A)(∀j ∈ N − {i})(a∗ij = α)

(∀i ∈ F − Fk)[(∀j ∈ A ∪ F − {i})(a∗ij = α) ∧ (∀j ∈ D)(a∗ij = β)]

(∀i ∈ Fk)[(∀j ∈ A ∪ F − Fk)(a∗ij = α) ∧ (∀j ∈ Fk ∪D − {i})(a∗ij = β)]

(∀i ∈ D)(∀j ∈ N − {i})(a∗ij = β)

(Denote this equilibrium as e2)

Or

2) If for any integer m < f and subset Fm = {i1, i2, i3, . . . im} ⊂ F we have (∀i ∈ Fm)(x(a+
f −m) + z ≥ ci), then the system converges to a Nash equilibrium s∗ where:

(∀i ∈ A)(∀j ∈ N − {i})(a∗ij = α)

(∀i ∈ F )[(∀j ∈ A ∪ F − {i})(a∗ij = α) ∧ (∀j ∈ D)(a∗ij = β)]

(∀i ∈ D)(∀j ∈ N − {i})(a∗ij = β)

(Denote this equilibrium as e3)

Case 3: When z ≤ −y and (∀i ∈ F )(ax+ z ≥ ci).
In this case as discussed before, all agents in F have incentive to extend cooperation

to each other in the third period, since the added benefit from reputation enhancement
and increased trustworthiness in their interactions with altruists more than justifies the
cost. Incentives towards cooperation with agents in D remain unchanged, and we have the
following proposition.

Proposition 3 When z ≤ −y and (∀i ∈ F )(ax + z ≥ ci), the system converges to an
equilibrium strategy profile identical to equilibrium e3.

2.2.5 When z > −y

z > −y implies the following. Firstly, for any agent i ∈ F , z > −y and ci < ax− y implies
that ci < ax + z. This means that all agents in F have incentive to extend cooperation to
each other in the third period, since extending cooperation to m other agents in F gives
change in utility m(ax− ci + z).
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Figure 3: Three kinds of equilibria that may emerge under z ≤ −y

Secondly, recall that in the third period if agent i ∈ D unilaterally deviates by switching
to reciprocate α to k agents in A (0 ≤ k ≤ a) and switching to offer α to m agents in F
(0 ≤ m ≤ f). Then the expected change in utility is
4ui = k(k +m)x− k(ci + y) +m(z − ci)
which is maximised by (k∗,m∗), where
(k∗,m∗) = (0, 0) if and only if a[ax− ci − y] + f [ax+ z − ci] < 0, and
(k∗,m∗) = (a, f) if and only if a[ax− ci − y] + f [ax+ z − ci] ≥ 0.

We know that for agents in D, ci > ax − y implies that the first term on the right hand
side of above expression is always negative. However, z > −y opens up the possibility that
the second term f [ax+ z − ci] may be positive, and even larger in magnitude than the first
term. Thus we have the following cases.

Case 4: When z > −y and (∀i ∈ D)
[
a(ax− ci − y) + f(ax+ z − ci) < 0

]
In this case as discussed before, agents in F link with each other in ties of mutual

cooperation in the third period. However, agents in D still do not have incentive to engage
in any cooperative activity. Thus we have the following proposition.

Proposition 4 When z > −y and (∀i ∈ D)
[
a(ax− ci− y) + f(ax+ z− ci) < 0

]
, the system

converges to a strategy profile identical to equilibrium e3.

Although the equilibrium converged to is the same in this case as in the previous case, the
incentive mechanism driving and determining the actions of agents in D is subtly different.
Note that z > −y implies for agents in D, while in the previous case (Case 3) it is not possible
to benefit from reciprocating cooperation to altruists, in this case it is possible but restricted
by different conditions. In Case 3, z ≤ −y prohibits any reputation building for these
agents. In this case, even though z > −y, it is the unavailability of enough opportunities
that prohibits reputation building. A larger f , in some sense, would have changed the
situation and allowed these agents to reciprocate cooperation to altruists as well as extend
unilateral cooperation to agents in F . This constraint is eased for some agents in D in the
next case examined.

Case 5: When z > −y, (∃i ∈ D)
[
a(ax− ci − y) + f(ax+ z − ci) < 0

]
18



and (∃j ∈ D)
[
a(ax− cj − y) + f(ax+ z − cj) ≥ 0

]
To analyse this case, consider the following partition of D.
D1 = {i ∈ D|a[ax− ci − y] + f [ax+ z − ci] ≥ 0} |D1| = d1
D2 = {i ∈ D|a[ax− ci − y] + f [ax+ z − ci] < 0} |D2| = d2
As already argued, agents in A ∪ F are all linked to each other in ties of mutual cooper-

ation at the end of the third period (since z > −y) and given above partitioning based on
costs, agents in D1 have incentive to reciprocate cooperation to all altruists while extending
unilateral cooperation to all agents in F . Thus we have

(∀i ∈ D1)[(∀j ∈ A ∪ F )(a3ij = α) ∧ (∀j ∈ D − {i})(a3ij = β)
(∀i ∈ D2)(∀j ∈ N − {i})(a3ij = β)

Figure 4: A possible strategy profile at the end of the third period

In the fourth period, agents in A ∪ F have no incentive to deviate (by lemma 1 and 2) to
withdraw cooperation in any interaction. Further, agents in F may consider reciprocating
cooperation to agents in D1. If i ∈ F reciprocates α to 0 ≤ k ≤ d1 agents in D1, the expected
change in utility is
4ui = −kci − ky + kx(a) = k(ax− ci − y) > 0 for all k ≥ 1.
Thus k∗ = d1 maximises this change in utility and agents in F reciprocate cooperation

to all agents in D1.
Now consider i ∈ D1. In the fourth period, these agents have no incentives to offer α to
agents in D2. Suppose i deviates to (i) offer β to 0 ≤ k ≤ a agents in A, (ii) offer β to
0 ≤ l ≤ f agents in F , and (iii) offer α to 0 ≤ m ≤ d1 − 1 agents in D1 − {i}. The change
in utility expected is
4ui = −kx(a+ f) + x(a− k)(m− l − k) + (k + l −m)ci + ky + (m− l)z
Let k∗, l∗ and m∗ be the values of k, l and m that maximise 4ui.
Since i is maximising utility by offering α all agents in A ∪ F at the end of the third

period, i has no incentive to switch to offering β to any agent in A ∪ F in isolation.
Then, m∗ = 0 −→ k∗ = 0 and l∗ = 0 . . . (xi)

Secondly,
4(4ui)
4m =

−4 (4ui)
4l = x(a− k)− ci + z

Now, k∗ = 0→ 4(4ui)
4m => 0 and

4(4ui)
4l < 0 (since ax− ci + z > 0)
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Thus k∗ = 0 −→ m∗ = d1 − 1 and l∗ = 0 . . . (xii)

From (xi), we have k∗ ≥ 1 −→ m∗ ≥ 1

m∗ ≥ 1 −→ 4(4ui)
4m > 0 and

4(4ui)
4l < 0

4(4ui)
4l < 0→ l∗ = 0

Then, 4ui = −k∗x(a+ f) + x(a− k∗)(m∗ − k∗) + (k∗ −m∗)ci + k∗y +m∗z
Substituting f +m∗ = µ and a− k∗ = κ gives:
4ui = κx(κ+ µ)− ci(κ+ µ) + µz − κy + {ci(a+ f)− fz + ay − ax(a+ f)}
where the last term of expression is a constant. The non-constant part of the above

expression is maximised by κ = a and µ = f (this is the same expression as 4ui being
considered in the third period for agents in D)

a− k∗ = κ = a −→ k∗ = 0. This is a contradiction.

Hence k∗ ≥ 1 leads to a contradiction and agents in D1 must not withdraw cooperation
from any altruist. From (xii), this implies that k∗ = 0, l∗ = 0 and m∗ = d1 − 1 maximise
the expected increase in utility for i. That is, i ∈ D1 remains cooperating with agents in F ,
and extends cooperation to other agents in D1. Further, this expected increase in utility is
positive:
4ui = ax(d1 − 1)− (d1 − 1)ci + (d1 − 1)z = (d1 − 1)[ax− ci + z] > 0

Thus we have (∀i ∈ D1)[(∀j ∈ N −D2 − {i})(a4ij = α) ∧ (∀j ∈ D2)(a
4
ij = β)

Now consider i ∈ D2. In the fourth period, these agents do not have incentives to offer α to
other agents in D2. If i ∈ D2 reciprocates α to k agents in A and offers α to m agents in
F ∪D1:
4ui = −(k +m)ci − ky +mz + k(a+m)x = k(ax− ci − y) +m(kx− ci + z)
where ax− ci − y < 0
Now, m∗ = 0→4ui|k∗≥1 < 0→ k∗ = 0
Further, k∗ = 0→4ui|m∗≥1 < 0→ m∗ = 0. Thus k∗ = 0↔ m∗ = 0 . . . (xiii)

Suppose m∗ ≥ 1 and k∗ < a
→4ui|m∗,k∗ ≥ 0 and 4ui|m∗,k∗ ≥ 4ui|m∗,a
4ui|m∗,k∗ ≥ 0→ ci ≤ k∗ax+ k∗m∗x+m∗z − ky

k∗ +m∗

4ui|m∗,k∗ ≥ 4ui|m∗,a → ci ≥ x(m∗ + a)− y
−→ k∗x(a+m∗) +m∗z − k∗y ≥ x(a+m∗)(k∗ +m∗)− y(k∗ +m∗)
→ z ≥ x(a+m∗)− y. This is a contradiction since z < 0 and x(a+m∗)− y > 0.
Thus m∗ ≥ 1→ k∗ = a . . . (xiv)

Now, k∗ = a −→ 4ui(k∗,m) = a(ax− ci − y) +m(ax− ci + z)
4(4ui(k∗,m))

4m = ax− ci + z > 0 −→ m∗ = d1 + f

Thus k∗ = a←→ m∗ = d1 + f . . . (xv)
From (xiii) and (xv) we can deduce that either (k∗,m∗) = (a, d1 +f) or (k∗,m∗) = (0, 0).

Further, (k∗,m∗) = (a, d1 + f) if and only if a(ax− ci − y) + (f + d1)(ax− ci + z) ≥ 0
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Consider the following partition of D2

D21 = {i ∈ D2|a[ax− ci − y] + (f + d1)[ax+ z − ci] ≥ 0}
D22 = {i ∈ D2|a[ax− ci − y] + (f + d1)[ax+ z − ci] < 0}
Then, agents in D21 reciprocate cooperation to altruists in A while extending cooperation

to all agents in F ∪D1, while agents in D22 continue refraining from cooperation.
(∀i ∈ D21)[(∀j ∈ A ∪ F ∪D1)(a

4
ij = α) ∧ (∀j ∈ D2 − {i})(a4ij = β)

(∀i ∈ D22(∀j ∈ N − {i})(a4ij = β)

The argument behind best response dynamics in the fourth period is as follows. At the end
of the third period, we find that agents i ∈ D1 reciprocate α to all agents in A and extend
α to all agents in F in the third period, while all j ∈ D2 refrain from any cooperation. In
the fourth period, all agents in F reciprocate α to all agents in D1, all i ∈ D1 extend α to
each other, and some agents in D2 have incentives to reciprocate α to all agents in A while
unilaterally extending α to all agents in F and D1. Call this set of agents D21. Then, we
know that in the fifth period agents in F will reciprocate α to these agents in D21 and agents
in D21 will have incentive to extend α to each other. Thus, in every period more and more
agents in D find incentives to enter ties of cooperation by reciprocating cooperation to the
altruists along with extending cooperation to not only agents in F but also the growing set
of agents from D who are linked to everyone in A ∪ F and to each other. This process may
converge to an equilibrium with a complete network of mutual cooperation ties, or it may
converge to an equilibrium where some agents in D continue to refrain from cooperation.

Suppose this process converges to an equilibrium where:
(∀i ∈ A)(∀j ∈ N − {i})(a∗ij = α)

Dk = {i1, i2, i3, . . . ik} ⊂ D is such that:
(∀i ∈ D −Dk)[(∀j ∈ N −Dk − {i})(a∗ij = α) ∧ (∀j ∈ Dk)(a

∗
ij = β)]

(∀i ∈ Dk)(∀j ∈ N − {i})(a∗ij = β)

(∀i ∈ F )[(∀j ∈ N −Dk − {i})(a∗ij = α) ∧ (∀j ∈ Dk)(a
∗
ij = β)]

Then, it must be the case that agents in Dk have no incentives to simultaneously reciprocate
α to agents in A while extending α to agents in F ∪D −Dk. This implies:
−(a+ f + d− k)ci + (f + d− k)z − ay + ax(a+ f + d− k) < 0
→ a(n− k)x− ay + (f + d− k)z < (n− k)ci

→ ax+ z − a(y + z)
n− k < ci

Alternatively, the process may converge to a complete equilibrium. Thus we have the fol-
lowing proposition.

21



Proposition 5 When z > −y, (∃i ∈ D)
[
a(ax− ci − y) + f(ax+ z − ci) < 0

]
and (∃j ∈ D)

[
a(ax− cj − y) + f(ax+ z− cj) ≥ 0

]
, the system may converge to either of the

following equilibria:

1) Suppose there exists an integer m < n− 1 and a subset Dm = {i1, i2, i3 . . . im} ⊂ D such

that (∀i ∈ Dm)(ax+z− a(y + z)
n−m < ci). Let k be the largest possible value of this integer and

Dk = {i1, i2, i3 . . . ik} ⊂ D be the largest possible set of this kind. Under these conditions,
the system converges to the following equilibrium s∗ where:

(∀i ∈ A)(∀j ∈ N − {i})(a∗ij = α)

(∀i ∈ D −Dk)[(∀j ∈ N −Dk − {i})(a∗ij = α) ∧ (∀j ∈ Dk)(a
∗
ij = β)]

(∀i ∈ Dk)(∀j ∈ N − {i})(a∗ij = β)

(∀i ∈ F )[(∀j ∈ N −Dk − {i})(a∗ij = α) ∧ (∀j ∈ Dk)(a
∗
ij = β)]

(Denote this equilibrium as e4)

Or

2) If for any integer m < n − 1 and subset Dm = {i1, i2, i3, . . . im} ⊂ D we have (∀i ∈
Dm)(ax + z − a(y + z)

n−m ≥ ci), then the system converges to a Nash equilibrium s∗ where

(∀i ∈ N)(∀j ∈ N − {i})(a∗ij = α)

(Denote this equilibrium as e5)

Figure 5: Three kinds of equilibria that may emerge under z > −y

Case 6: When z > −y and (∀i ∈ D)
[
a(ax− ci − y) + f(ax+ z − ci) ≥ 0

]
From the arguments made above, we have the following strategy profile at the end of

third period:
(∀i ∈ A)(∀j ∈ N − {i})(a3ij = α)

(∀i ∈ F )
[
(∀j ∈ A ∪ (F − {i}))(a3ij = α) ∧ (∀j ∈ D)(a3ij = β)

]
(∀i ∈ D)[(∀j ∈ A ∪ F )(a3ij = α) ∧ (∀j ∈ D − {i})(a3ij = β)
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In the fourth period, consider i ∈ F . By lemma 2, i does not withdraw cooperation from
any agent in A ∪ F − {i}. An optimal unilateral deviation can only involve i switching to
reciprocate α to 0 ≤ k ≤ d agents in D. This yields change in utility
4ui = −kci − ky + k(a+ 1)x+ akx = k[(2a+ 1)x− ci − y].
Since ci < ax− y < (2a+ 1)x− y, this is positive for all k ≥ 1 and maximised by k∗ = d
Thus agents in F reciprocate cooperation to all agents in D and we have
(∀i ∈ F )(∀j ∈ N − {i})(a4ij = α)

Consider i ∈ D in the fourth period. Suppose i deviates to (i) offer β to 0 ≤ k ≤ a agents in
A, (ii) offer β to 0 ≤ l ≤ f agents in F , and (iii) offer α to 0 ≤ m ≤ d− 1 agents in D−{i}.
The change in utility expected is:

4ui = −kx(a+ f) + x(a− k)(m− l − k) + (k + l −m)ci + ky + (m− l)z

First we note that since i is maximising utility by offering α all agents in A ∪ F at the
end of the third period, i has no incentive to switch to offering β to any agent in A ∪ F in
isolation, that is: m∗ = 0 −→ k∗ = 0 and l∗ = 0 . . . (xvi)

Secondly,
4(4ui)
4m = −4(4ui)

4l = x(a− k)− ci + z

Now, k∗ = 0 −→ 4(4ui)
4m > 0 and

4(4ui)
4l < 0 (since ax− ci + z > 0)

Thus k∗ = 0 −→ m∗ = d1 − 1 and l∗ = 0 . . . (xvii)

From (xvi), we have k∗ ≥ 1 −→ m∗ ≥ 1

m∗ ≥ 1 −→ 4(4ui)
4m > 0 and

4(4ui)
4l < 0

4(4ui)
4l < 0 −→ l∗ = 0

Then, 4ui = −k∗x(a+ f) + x(a− k∗)(m∗ − k∗) + (k∗ −m∗)ci + k∗y +m∗z
Substituting f +m∗ = µ and a− k∗ = κ gives:
4ui = κx(κ+ µ)− ci(κ+ µ) + µz − κy + {ci(a+ f)− fz + ay − ax(a+ f)}
where the last term of the expression is a constant and the non-constant part of the

expression is maximised by κ = a and µ = f (this is the same expression as 4ui being
considered in the third period for agents in D)

a− k∗ = κ = a→ k∗ = 0. This is a contradiction.

Hence k∗ ≥ 1 leads to a contradiction and from (xvii), k∗ = 0, l∗ = 0 and m∗ = d − 1
maximise the expected increase in utility for i. Further, this expected increase in utility is
positive:
4ui = ax(d− 1)− (d− 1)ci + (d− 1)z = (d− 1)[ax− ci + z] > 0
That is, agents in D do not withdraw cooperation from any agent in A ∪ F and instead

extend cooperation to other agents in D as well, and we have
(∀i ∈ D)(∀j ∈ N − {i})(a4ij = α)

Thus in this case, we have a complete network of mutual cooperation at the end of the
fourth period. Suppose, in the fifth period, an arbitrary agent i ∈ N considers a unilateral
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deviation involving switching to offer β to 0 ≤ k ≤ n − 1 agents. This yields the following
expected change in utility:
4ui = k(ci + y)− kx(n− 1)− kx(n− 1− k) = k[−x(2n− 2− k) + ci + y]
4ui ≥ 0→ ci ≥ x(2n− 2− k)− y > (n− 1)x− y
That is, an agent who deviates must have ci > (n − 1)x − y. By assumption, (∀i ∈

F )(ci < ax − y < (n − 1)x − y). Further, we have (∀i ∈ D)(ci < ax + z). Suppose
(∃i ∈ D)((n − 1)x − y < ci < ax + z). This implies that (n − 1 − a)x − y < z. Now,
n− 1−a ≥ 1 and x > y means z > (n− 1−a)x− y > 0. This is a contradiction, since z < 0
by assumption.

Hence we must have (∀i ∈ N)(ci < (n− 1)x− y), and no agent has incentive to unilaterally
deviate, giving us the following proposition.

Proposition 6 When z > −y and
(
∀i ∈ D

)(
a[ax− ci + y] + f [ax+ z− ci] ≥ 0

)
, the system

converges to an equilibrium strategy profile s∗ where: (∀i ∈ N)(∀j ∈ N − {i})(a∗ij = α)

From this evolution analysis, we find that equilibria of varying degrees of cooperation emerge
under different conditions on the costs of cooperation of agents and distribution of altruists
in the population. The presence of altruists is not only crucial to starting off the process
of cooperation, but the number of altruists in the population has a positive relation with
the degree of cooperation observed in the equilibrium network that evolves. For instance, a
relatively larger number of altruists in the population would mean that many more agents
are likely to fall in subgroup F , which is the group of agents that reciprocate to the altruists
in the second period. Further, if the number of altruists is large then the likelihood of
agents in F extending cooperation to each other in the third period is also higher, since each
cooperative link extended to another agent in F enhances trustworthiness in a significant
number of cooperative ties (i.e mutually cooperative ties with all altruists).

Note that while altruism is essential for any cooperation to evolve from a situation of
zero cooperation, the incentive to build reputation also plays an important role in explaining
cooperative activity initiated by non altruistic agents. Apart from their interactions with
altruistic agents, where reciprocity has a role to play, all other cooperative ties that non
altruistic agents form are first initiated to build trustworthiness or reputation to support
existing ties of mutual cooperation. Also observe that the symmetric nature of the evolution
process in absence of any perturbations ensures that links of cooperation once formed are
not broken through the evolution process. This is because a non altruistic agent decides
to extend unilateral cooperation to another agent only when the benefits of trustworthiness
that it yields are more than the cost to utility. In the next period, this may convert to
a link of mutual cooperation through reciprocation by the other interacting partner, or
it may remain a link of unilateral cooperation. In both cases, it still serves its purpose of
enhancing reputation and continues to justify its cost, unless the number of common mutually
cooperative partners between the two interacting agents falls. That is, cooperation extended
in one period is withdrawn in any future period only if the embeddedness7 of the cooperative

7The embeddedness of an edge in a network is the number of common neighbors the two endpoints have.
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tie falls, which would happen if other cooperative ties were to be withdrawn. Because of the
symmetric nature of the process, in absence of exogenous increases in costs of cooperation
and in absence of mistakes or errors in rational decision making, there is no independent
reason for cooperation to be withdrawn.

However, we can realistically expect a variety of exogenous perturbations in a process of
repeated interaction between agents. For instance, some agents might make errors in decision
making, while others might experience changes in their cost of cooperation due to external
factors. In fact, we can even imagine altruists’ attitude to remain altruistic only for a few
periods of repeated interaction. This raises the possibility of a wider range of Nash equilibria
to emerge from the given incentive mechanism of network formation. In particular we can
have a variety of strategy profiles that do not emerge as equilibria from the undisturbed
and symmetric process of evolution of cooperation discussed above, but once manifested
through alternative processes, sustain as Nash equilibrium. Then, regardless of the process
through with equilibria emerge, they will always exhibit some characteristic features. These
are discussed in the next section.

3 Nash equilibria

We begin by revisiting certain observations from our analysis of the evolution process.

1. The complete non cooperation network such that (∀i, j ∈ N)(aij = β ∧ aji = β) is a
Nash equilibrium if and only if (∀i ∈ N)(ci > z).

This means that in absence of altruists, the strategy profile where no one cooperates
with anyone else is always a Nash equilibrium. This reminds us of the importance of
altruists for starting off a process of cooperation network formation through repeated
interactions of agents.

2. A complete network of mutual cooperation where (∀i, j ∈ N)(aij = α ∧ aji = α) is a
Nash equilibrium if and only if (∀i ∈ N)(ci < (n− 1)x− y)

The interpretation of the condition is simply that from a complete network of mutual
cooperation, unilaterally withdrawing cooperation simultaneously from all partners
must not be profitable to any agent. The necessity of this condition for the complete
network to be a Nash equilibrium emerges in our discussion of Case 6 in the previous
section. Further, this condition is also sufficient to ensure that the complete network
is a Nash equilibrium. To see this, suppose this condition is satisfied and a complete
network of mutual cooperation is not a Nash equilibrium. Then there exists an agent i
who can make a profitable unilateral deviation to withdraw cooperation from 1 ≤ k ≤
n − 1 interactions, or, 4ui = k[ci + y − x(2(n − 1) − k)] > 0 for some k ≥ 1. This
implies that ci + y − x(2(n− 1)− k) > 0 for some k ≥ 1.

Now, k ≤ n− 1 −→ −k ≥ −(n− 1) −→ 2n− 2− k ≥ n− 1

−→ ci + y − (2n− 2− k)x ≤ ci + y − (n− 1)x

Further, ci + y − (n− 1)x < 0 −→ ci + y − (2n− 2− k)x < 0. This is a contradiction
with 4ui > 0. Thus the complete network of mutual cooperation must be a Nash
equilibrium when the condition (∀i ∈ N)(ci < (n− 1)x− y) is satisfied.
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3. Finally, we find that in all Nash equilibria that emerge through the undisturbed pro-
cess of evolution of cooperation, links of unilateral cooperation are sustained only by
altruistic agents.

Regardless of the process through which equilibria manifest, we find that links uni-
lateral cooperation can not be sustained by non altruistic agents in absence of cost
heterogeneity. In presence of cost heterogeneity, however, non altruistic agents may
also sustain unilateral cooperation in Nash equilibrium. These observations are dis-
cussed next.

Proposition 7 If all agents in the population are homogeneous and non altruistic, such that
(∀i ∈ N)(ci = c > z) and s∗ is a Nash equilibrium profile, then (@i, j ∈ N)(a∗ij = α∧a∗ji = β)

Proof: Suppose all agents are homogeneous and s∗ is a Nash equilibrium profile such that
(∃i, j ∈ N)(a∗ij = α ∧ a∗ji = β).

A unilateral deviation makes i worse off. From (iv), this implies:
c− z − pij(s)x < 0 −→ c < pij(s)x+ z
A unilateral deviation makes j worse off. From (iii), this implies:
−c− y + (tji(s) + 1)x+ pij(s)x < 0 −→ c > (tji(s) + pij(s) + 1)x− y

−→ (tji(s) + pij(s) + 1)x− y < pij(s)x+ z
−→ (tji(s) + 1)x− y < z
Now, tji(s) ≥ 0 and x > y implies that (tji(s) + 1)x− y > 0. Also, z < 0 by assumption.

Thus proposition 7 is proved by contradiction. �

The argument here is that if agent i finds it optimal to sustain a link of unilateral cooperation
towards agent j, it must be because of the reputation related benefits that this brings. That
is, i must have a sufficiently large number of common mutually cooperative partners with
j so that the cost of sustaining unilateral cooperation with j is more than matched by the
benefits from increased trustworthiness to all these common cooperative partners. But then
j also has enough common mutually cooperative partners with i such that the benefit from
reciprocating cooperation to i outweighs the cost. Thus, in any case where agent i has incen-
tive to extend unilateral cooperation to agent j, the latter also has incentive to reciprocate
cooperation to i. In other words, in any situation where sustaining unilateral cooperation is
not sub optimal, incentives to reciprocate cooperation are stronger than incentives to remain
a beneficiary of unilateral cooperation. Note that while unilateral cooperation does not exist
as a feature of equilibria, the act of extending unilateral cooperation or reputation building
still has a role to play in best response dynamics and convergence to equilibrium in case of
any perturbations to the given network. Further, unilateral cooperation may feature into
Nash equilibrium networks in presence of heterogeneous agents and may even be sustained
by non altruists. Following example illustrates one such case.

Example 1 Suppose n = 7, x = 7, y = 4, z = −1, c = (c1, c2, ....c7) = (5, 15, 15, 15, 15, 15, 10).
Note that there are no altruists in the population. The diagram below illustrates a possible
network emerging from a Nash equilibrium, with agent 1 sustaining unilateral cooperation
with agents 2, 3, 4, 5 and 6.
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Figure 6: Agent 1 sustains unilateral cooperation with multiple agents because it adds to
her trustworthiness in her cooperative tie with agent 7

Consider i ∈ {2, 3, 4, 5, 6} making an arbitrary unilateral deviation by withdrawing coop-
eration from 0 ≤ k ≤ 5 links, without reciprocating cooperation to 1. Then her expected
change in utility is 4ui = kci + ky − 5kx − (5 − k)kx = k(−51 + 7k) ≤ 0 for all possible
values of k.

If i reciprocates cooperation to 1, and withdraws cooperation from 0 ≤ k ≤ 4 links (while
retaining cooperation with 7), her expected change in utility is 4ui = −ci − y + 2x + x +
kci + ky − 5kx− (5− k)kx = k(−51 + 7k) + 2 ≤ 0 for all possible values of k.

If i reciprocates cooperation to 1, withdraws cooperation from 7, and withdraws cooper-
ation from 0 ≤ k ≤ 4 other links, her expected change in utility is 4ui = −ci − y + x+ ci +
y− 5x+ kci + ky− 5kx− (5− k)(k + 1)x = −4x+ kci + ky− 5kx− (5− k)kx− (5− k)x =
k(−51 + 7k) + 7k − 63 < 0 for all possible values of k. Thus i has no incentive to deviate.

Consider agent 7 making an arbitrary deviation by withdrawing cooperation from 0 ≤ k ≤ 5
agents in {2, 3, 4, 5, 6}. If she does not withdraw cooperation from 1, 4u7 = kc7+ky−5kx−
(5− k)kx = −56k + 7k2 = k(7k − 56) ≤ 0 for all possible values of k. If she simultaneously
withdraws cooperation from 1, 4u7 = k(7k − 56) + c7 + y − x = k(7k − 56) + 7 ≤ 0 for all
possible values of k. Thus agent 7 has no incentive to deviate.

Consider agent 1 making an arbitrary deviation by withdrawing cooperation from 0 ≤ k ≤ 5
agents in {2, 3, 4, 5, 6}. If she does not withdraw cooperation from 7, 4u1 = kc1−kz−kx =
5k + k − 7k = −k ≤ 0 for all possible values of k. If she simultaneously withdraws cooper-
ation from 7, 4u1 = c1(1 + k) − kz − 6x = 5 + 5k + k − 42 = −37 + 6k < 0 for all values
of k. Thus agent 1 also has no incentive to deviate and the strategy profile underlying the
given network is a Nash equilibrium where a non altruistic agent sustains multiple links of
unilateral cooperation.

In example 1, note that the cost of cooperation for the agent sustaining unilateral cooper-
ation is much lower than the cost for agents who do not reciprocate cooperation for these
interactions. In fact, in any Nash equilibrium where agent i sustains a link of unilateral
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cooperation with agent j, it must be the case that ci < cj. This is seen from the next
proposition.

Proposition 8 If s∗ is a Nash equilibrium strategy profile, then for any pair of agents
i and j,

(
a∗ij = ∧a∗ji = β −→ ci < pij(s

∗)x+ z ∧ cj > (2pij(s
∗) + 1)x− y

)
Proof: Suppose s∗ is a Nash equilibrium strategy profile and

(
∃i, j ∈ N

)(
a∗ij = α∧ a∗ji = β

)
.

If i deviates to offer β to j:
4ui = ci − z − pij(s∗)x < 0 (from (iv))
→ ci < pij(s

∗)x+ z
If j deviates to offer α to i:
4uj = −cj − y + (tji(s

∗) + 1)x+ pij(s
∗)x < 0 (from (iii))

→ cj > (tji(s
∗) + pij(s

∗) + 1)x− y
→ cj > (2pij(s

∗) + 1)x− y (since tji(s
∗) ≥ pij(s

∗)) �

Thus we have cj > (2pij(s
∗) + 1)x − y and ci < pij(s

∗)x + z when i sustains unilateral
cooperation in her interaction with j in equilibrium. Now, x > y and z < 0 implies that
(2pij(s

∗) + 1)x − y > 2pij(s
∗) > pij(s

∗) > pij(s
∗) + z. Thus cj > (2pij(s

∗) + 1)x − y >
pij(s

∗)+z > ci; that is, if agent i sustains a link of unilateral cooperation with another agent
j in Nash equilibrium, it must be that cj > ci. Intuitively, the cost of extending cooperation
is low enough for i to find it justified by the reputation related benefits of reputation gain
that it unilateral cooperation brings, given the common cooperative partners that i shares
with j. However, this cost is large enough for j to prohibit her from reciprocating. This
highlights again the role of cost heterogeneity in explaining unilateral cooperation in Nash
equilibria.

Finally, we return to our observation that a complete network of mutual cooperation is a
Nash equilibrium if and only if (∀i ∈ N)(ci < (n − 1)x − y). Note that if this condition is
satisfied, then there can exist multiple Nash equilibria with varying degrees of cooperation,
the complete cooperation equilibrium being one of them. The example below illustrates one
such equilibrium network with less than complete mutual cooperation.

Example 2 Suppose n = 7, x = 5, y = 4, z = −1 and for all i ∈ N , cost of cooperation
is ci = 6. Note that ci > x − y for all i ∈ N implies that mutual cooperation can not
be sustained in equilibrium without network effects. The cooperative network illustrated
beloq(with only links of mutual cooperation shown) is supported by a Nash equilibrium
strategy profile.
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Consider agent 3. An arbitrary unilateral deviation can consist of withdrawing cooperation
from 0 ≤ k ≤ 3 agents in {1, 4, 6} and 0 ≤ m ≤ 3 agents in {2, 5, 7} (where k > 0 ∨m > 0).
This yields change in utility:
4u3 = (k +m)(c+ y)− kx(6− k)−mx(6−m) = 10(k +m)− 5[k(6− k) +m(6−m)]
which is negative for any positive value of k + m, and zero otherwise. Thus agent 3 has

no incentive to unilaterally deviate.

Consider agent 1. An arbitrary unilateral deviation can consist of a combination of with-
drawing cooperation from 0 ≤ k ≤ 2 agents in {4, 6}, extending cooperation to 0 ≤ m ≤ 3
agents in {2, 5, 7} and withdrawing cooperation from 3.

If 1 withdraws cooperation from 3:
4u1 = (k+1)(c+y)−3x(k+1)− (k+1)(2−k)x+m(z−c) = (k+1)[10+5(k−5)]−7m
which is negative for all combinations of positive values of k and m.
If i does not withdraw cooperation from 3:
4u1 = k(c+ y)− 3kx− (3− k)kx−mc+mz +mx = 10k − 5k(6− k)− 2m
which is negative for all combinations of positive values of k and m.

Thus agent 1 has no incentive to deviate. Note that agents 1, 2, 4, 5, 6 and 7 are symmetrically
placed in this network. Thus a symmetric argument can be made to show that other agents
in {2, 4, 5, 6, 7} also have no incentive to deviate and the strategy profile underlying the given
cooperation network is a Nash equilibrium. �

Thus we find that when the cost of cooperation for every agent is less than (n − 1)x − y,
networks with varying degrees of cooperation can sustain as Nash equilibria. However, we
find that presence of agents with cost higher than (n−1)x−y is detrimental to cooperation.

Proposition 9 If (∃i ∈ N)(ci > (n−1)x− y), then i does not engage in any links of mutual
cooperation in equilibrium.

Suppose i is involved in a link of mutual cooperation with j in Nash equilibrium s∗. This
implies that ci + y − (tij(s

∗) + pij(s
∗) + 1)x < 0. Given that ci > (n− 1)x− y, this implies

that pij(s
∗) > n/2− 1, or pij(s

∗) ≥ n/2. Further, for any m in the set Pij(s
∗), pim(s∗) ≥ n/2

and for any l ∈ Pim(s∗), pil(s
∗) ≥ n/2 and so on.

The highest utility that i can be facing in such an equilibrium is when any link of
mutual cooperation that she engages in has the maximum possible embeddedness, which is
n − 2, that is when the network is a complete network of mutual cooperation. However,
ci > (n − 1)x − y ensures that i has incentive to deviate from such a strategy profile by
withdrawing cooperation from all agents.

Thus we see that agents whose cost of cooperation exceeds (n− 1)x− y do not ever find
it optimal to extend cooperation in any interaction. Further, the presence of such agents in
the population can be highly detrimental for cooperation to exist in equilibria. The next
example illustrates an extreme situation where in the presence of a single agent of this kind
we find that the unique Nash equilibrium is one with zero cooperation between all agents.

Example 3 Suppose n = 5, x = 20, y = 10, z = −5 and c = (c1, c2, . . . c5) = (75, 55, 35, 15, 5).
Note c1 > 4x − y implies that agent 1 does not extend cooperation in any interaction in
equilibria. Since agent 1 is never linked in ties of mutual cooperation with anyone else in
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any equilibrium, sustaining cooperation with 1 does not yield benefits of trustworthiness or
reputation enhancement for other agents. Thus in any equilibrium cooperative network, 1
is an isolate (or engaged in β − β ties with everyone else).

Now consider the set N − {1}. Note that c2 > 3x − y implies that even in a situation
where agents 3, 4 and 5 are all linked in ties of mutual cooperation and extending coopera-
tion to agent 2, the latter has no incentive to reciprocate cooperation to anyone. Similarly,
if agents 2, 3, 4 and 5 are all linked with mutual cooperation, agent 2 has incentive to de-
viate and withdraw cooperation from all interactions. That is, even in the scenario that is
most favourable towards cooperation, agent 2 does not cooperate with anyone in equilib-
rium. Given that, there are no benefits of reputation enhancement possible from sustaining
cooperation with 2; thus 2 is engaged in β − β links with everyone in any equilibrium.

By the same argument, observe that c3 > 2x − y and c4 > x − y and c5 > z imply that
none of the remaining agents can be extending cooperation to anyone else in equilibria. But
this implies that the unique Nash equilibrium is the empty network.

In the above example, suppose agent 5 were an altruist instead. Note in that scenario
even agent 4 (who has lowest cost among other agents) would not optimally reciprocate
cooperation to 5 and in that case the unique Nash equilibrium would be one with agent 5
extending cooperation to all other agents and all other agents refraining from cooperating
in all interactions. On the other hand, suppose the cost of cooperation for agent 1 were 55
instead of 75. Then, from proposition 9, the complete network of mutual cooperation is a
Nash equilibrium. Thus the above example illustrates how the presence of a single agent
with ci > (n − 1)x − y can be detrimental to overall cooperation. For instance, if from a
complete network in equilibrium, the cost of cooperation for a single agent were to suddenly
increase then it can lead to a larger breakdown of cooperation through the network effect
because when one agent exits cooperation, it reduces the trustworthiness supporting all other
interactions in the previously complete network.

4 Discussion

This paper proposes a model of cooperative network formation that serves to model coopera-
tive interactions between individuals in situations that can be formalised by the coordination
game, with an important application being costly sharing of valuable resources in the context
of general scarcity. In line with literature, we assume that being observed to be cooperating
in many situations increases one’s reputation or trustworthiness. Further, we assume that
information about one’s reputation is communicated through the cooperation network itself,
and that a higher perceived trustworthiness of any agent involved in a mutually coopera-
tive interaction yields a higher value from that interaction for the agent. This results in
an incentive for indirect reciprocity, which is a well documented motive and tendency in
literature on cooperation. Note that the indirect reciprocity is directed towards partners of
partners, resulting in a tendency for triadic closure. Triadic closure refers to the tendency
of two nodes who share one or more neighbours to become linked to each other in social
networks. Agents who share neighbours in social networks are expected to form social links
with each other because they have higher opportunity of interacting with each other, can
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develop higher trust on each other and may even have a higher incentive to link with each
other to avoid any social stress. Through our model we find that reputation building in
cooperative interactions can also explain triadic closure in some networks.

The network effects of trustworthiness considered in our model have the implication that
the more embedded an interaction is in common mutual cooperative partnerships, the higher
incentives that both individuals have to maintain cooperation in the interaction since it a) en-
hances trustworthiness for many other interactions (even if cooperation is not reciprocated);
and b) yields a high value when cooperation is reciprocated, because of high trustworthiness
due to high embeddedness. These network effects have an important role in not just the
evolution of cooperation but also in sustaining cooperation in equilibria. Because of the
importance of network effects in sustaining cooperation, we find that the presence of a few
altruists can generate high levels of cooperation in equilibria whereas the presence of a few
high cost agents (whose cost of cooperation is too high to ever cooperate) can be potentially
very detrimental to the overall level of cooperation in equilibria.

From our analysis of the evolution process, we find that equilibria of varying degrees of
cooperation emerge under different conditions on the costs of cooperation of agents and dis-
tribution of altruists in the population. The presence of altruists is crucial to starting off the
process of cooperation and the number of altruists in the population has a positive relation
with the degree of cooperation observed in the equilibrium network that evolves. For non
altruistic agents, the incentive to build reputation plays an important role in explaining co-
operative activity. Cooperative ties that non altruistic agents form with other non altruistic
agents are first initiated to build trustworthiness or reputation to support existing ties of
mutual cooperation.

From our analysis of Nash equilibria, we find that under if costs of cooperation for all
agents in the population are below a certain threshold, cooperative networks of various kinds
can manifest as equilibria. Network effects of trustworthiness ensure that cooperative activity
is found in equilibria even under cost conditions that would have prohibited cooperation if
each pair-wise interaction were independently conducted. We also find that in presence of
heterogeneity of costs of cooperation, even non altruistic agents may sustain links of unilateral
cooperation in equilibrium. Further, the presence of even a few individuals with prohibitively
high costs of cooperation (such that they refrain from reciprocating cooperation even if the
entire set of other agents, being completely connected in ties of mutual cooperation, were
extending cooperation to them) is highly detrimental for cooperative activity in equilibria.

Various dynamic models of network formation in the context of cooperative networks have
been proposed by Jackson and Watts (2001, 2002a, 2002b). A significant difference between
these formulations in literature and the model proposed here is that while in the works of
Jackson and Watts players choose their interaction patterns on an individual-by-individual
basis (in every period a single pair of nodes is stochastically chosen to update the link between
them), in our model agents decide in each period of discrete time their best response actions
towards all other players. This limits the applicability of our model such that it is best
suited to study cooperation in small populations or geographic areas where agents have
repeated interactions with everyone else and hence choose actions for all their interactions
simultaneously. We acknowledge this limitation in the model; a richer version of the model
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could be one that restricts agents to be able to change actions with respect to only a few other
agents in any given period. Given that, it may be useful to analyse evolution of cooperation
from given initial network structures (which can also influence the equilibria that emerge)
instead of a situation of zero cooperation. Dynamics of myopic best responses could also be
replaced by far-sightedness for a richer analysis.

Another major limitation of the model is that it assumes for simplicity a single cost of
cooperation, whether reciprocated or non-reciprocated. This gives rise to the following prob-
lem. With given incentive parameters x, y and z assumed to be the same for all individuals,
any heterogeneity in agents’ inherent trustworthiness (independent of their network position)
is reflected in their costs of cooperation. For instance, if we wanted to model the fact that
two agents i and j are identically placed in the network and yet i enjoys a higher payoff
because of an inherently higher trustworthiness (which causes other agents to share higher
quality and quantity of resources), we can do it only by assuming a lower cost of cooperation
for i than for j. This is why we interpret ci as an indicator of not only the logistical costs
of sharing resources or information, but also any other exogenous factors that may increase
the effort or investment that i needs to make to derive benefits from the link. But note also
that attitudes of altruism are also defined using cost of cooperation. Since altruists prefer
to unilaterally cooperate over a situation of no cooperation, this can only be modelled by
assuming ci < z for altruists. This gives rise to an unintentional interpretation of altruists as
individuals with high levels of inherent trustworthiness. While altruists can develop a high
network-based reputation by extending cooperation to all other agents, there is no reason to
assume that they are inherently more trustworthy than other agents. This problem can be
resolved by allowing unilateral cooperation and reciprocated cooperation to have different
associated costs.

Finally, thus far we have assumed that agents have the same cost of extending cooperation
towards all other agents, hence excluding the possibility of heterogeneity based communal
identity8. This assumption may be dropped to yield more asymmetric and communally
segregated equilibria through the evolution process. Further, as mentioned before, the best
response dynamics considered in the evolution process provides a tool to analyse the impact
of external perturbations on existing cooperative structures.

8Agents belonging to the same ethnic, linguistic, caste or religious community may lower costs of extending
cooperation to each other because of logistical ease and higher implicit trust on each other
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