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  Introduction

The paper aims to examine the changes in productivity and
profitability of US electric utility plants during the period of the application
of tradable permit system, known as SO2 allowance system. We estimate
the input distance function using a panel data on 67 electricity-generating
plants for the period 1995-2001. Malmquist productivity and its
components — technical efficiency change and technical change are
measured on the basis of the estimated parameters. Fisher productivity
index has an interpretation in terms of Georgescu-Roegen’s  (1951)
notion of ‘return to dollar’, a measure of profitability (Althin et al., 1996).
We also use the parameters of the distance function to measure the
changes in profitability over time.

Title IV of the 1990 Clean Air Act Amendments (CAAA)
establishes a market for transferable SO2 emissions allowance among
electric utilities. Under this system, reduction in SO2 emissions are
achieved by setting a cap along with allowing the trading of marketable
pollution permits, popularly known as SO2 allowances. Here each
generating unit of the electricity industry is allocated a fixed number of
allowances each year in proportion to emissions during the 1985-87
period and is required to hold one allowance for each ton of SO2 it emits.
Electricity generating firms can now transfer allowance among their own
facilities, sell them to other firms, or bank them for use in future years.
Thus the flexibility provided by this program enables the generating units
to pursue a variety of compliance options to meet the regulation
obligations, including scrubber installation, fuel switching, energy
efficiency and allowance trading. Through emissions trading electricity
generating firms have the incentive to find the lowest-cost means of
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achieving compliance and to reap financial rewards for developing those
means. We examine the productivity and profitability changes of these
firms during this period of trading in SO2 allowances.

Previous studies have tried to examine the gains from trading in
emissions in comparison to command and control alternatives such as
forced scrubbing and a uniform emission rate standard (e.g., Carlson et
al., 2000) or to judge whether there remain opportunities to reduce
abatement costs through allowance trading even after plant owners have
taken advantages of other cost reducing opportunities (e.g., Swinton,
2002; Coggins and Swinton, 1996). Fare et al. (2002) have estimated the
total cost of pollution abatement of US electric plants and compared
these estimates with the survey estimates of pollution abatement costs
incurred by power plants. Kolstad and Turnovsky (1998) have shown that
technological change has been substantially sulfur saving, which
supports the case that technical progress was responsible at least in part
for the drop in abatement costs of SO2 emissions. This explains the
differentials of observed prices of SO2 allowance and the predicted
abatement costs of these emissions.  But none of these studies have
tried to examine the productivity and profitability changes during the
period when the sulfur emissions are regulated through an environmental
policy which relies on the logic of ‘cap and trade’ in emissions.

Although the US electric industry has received increasing
attention, there are only a few empirical studies on productivity impacts
of environmental regulation. To the best of our knowledge, these include
Gollop and Roberts (1983) and Yaisawarng and Klien (1994). Gollop and
Roberts (1983) used the cost function framework to analyze the effects
of SO2 restrictions on the rate of productivity growth in the electric power
industry over the period of 1973-1979. They develop a firm specific
measure of regulatory intensity and find that emission regulations result
in significantly higher generating costs and average rate of productivity
growth reduces by 0.59 percentage points per year owing to these
regulations. Yaisawarng and Klien (1994) investigated the productivity
performance of US power plants during 1985-1989 using a framework
similar to the present study. They used the data envelopment analysis
(DEA) to compute the cumulative Malmquist input-based productivity
index. They account for input used to control sulfur emissions as well as
emissions output. They find that productivity decreased from 1985 to
each of their three target years, but grew in the last year.

The computation of profitability requires data on the prices of
inputs and outputs. Price information can be had for the desired outputs
and inputs, but for unwanted products price information does not exist.
Like that, productivity is conventionally measured by the index numbers
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and the computation of index numbers is possible with the data of prices
of all outputs and inputs. With regard to prices of bad outputs Repetto et
al. (1996) suggest the need to establish market valuation for
environmental damages, so that reductions in those damages can be
credited to firm output. To get information on abatement expenditures,
surveys have been used as principal methods but their accuracy has
always been the issue of much concern. Moreover, these expenditure
estimates are unlikely to be available on yearly basis. Thus, one cannot
compute profitability directly, but can retrieve that information indirectly
using the duality theory. In this case one can compute Malmquist
productivity index using only input and output quantity data and the
duality between the input distance function and the cost function provide
a measure of profitability, namely Fisher productivity index.

Moreover, the conventional productivity measures, by neglecting
the decrease in the SO2 emissions, fail to recognize that a higher
proportional increase in the production of good output was feasible with
given inputs if adequate efforts had not been made to reduce SO2. Thus,
the conventional measures are biased because environmental
compliance expenditures by the firms lead to environmental
improvements, both the expenditure and improvement should be
accounted for in the measurement of productivity changes.  An
environmentally sensitive measure, when the abatement of pollution is
costly, leads to higher productivity growth estimates for a firm because
this measure is sensitive to changes in pollution levels and credits the
firms for pollution abatement activities while the conventional measure
does not. In other words, it can be said that the environmentally sensitive
measure accounts not only for the production of marketable outputs but
also for producing it with a lower level of sulfur emissions. Therefore the
Malmquist index measured with weak disposability of bad outputs is a
better indicator of true productivity growth from the social point of view.

Our approach to measure productivity and profitability changes
of US electric utility plants during the regime of SO2 allowance program
differs from the existing literature. Brannlund et al. (1995) have examined
the impact on the environmental regulations on firm profits in the
Swedish pulp and paper industry. They have adopted the non-parametric
programming approach and measure the impact for the cross section
data. Althin et al. (1996) have provided the theoretical framework for
measuring the changes in the productivity and profitability of firms in
terms of input distance function when the firm is producing only the good
outputs. We apply their results when the firm is producing both good as
well as bad outputs and the latter are regulated. Moreover, we take
production inefficiency into account in deriving the measure of change in
elasticity of scale, a component of profitability. This point contrasts
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markedly with Althin et al. since plants generally operate on different
levels of efficiency; therefore taking the inherent inefficiency into account
should provide a more realistic measure.

There are several studies on the measurement of productivity
changes in industries, which produces good and bad outputs
simultaneously during the production process. Some of these studies
have treated the bad outputs as inputs,1 while the others have treated
them as a synthetic output such as pollution abatement (e.g. Gollop and
Robert, 1983). Sushamamurty and Russell (2002) have pointed out that
the treatment of bad outputs as inputs is not consistent with the material
balance approach. The approach adopted by Gollop and Robert to treat
the reduction in bad output as good output creates a different non-linear
transformation of the original variable in the absence of base constrained
emission rates (Atkinson and Dorfman, 2002). Pittman (1983) proposed
to overcome this problem by treating good and bad outputs non-
symmetrically. He was of the view of measuring the maximal radial
expansion of good outputs and contraction of bad outputs. Chung et al.
(1997) has used the directional distance function to calculate production
relationships involving good and bad outputs to overcome this problem.
The disadvantage of this approach in the present context is that it is
difference based whereas the Malmquist productivity index and Fisher
index are ratio based. Therefore, following Atkinson and Dorfman (2002)
input distance function is used as an analytical tool in the present study.
It provides a radial (ratio based) measure of efficiency which signals
better performance for observations that are using lesser quantities of
inputs for the given level of outputs. This function is less restrictive in the
sense that it is not treating the bad outputs, either inputs or pollution
abatement, as good output, rather it treats the bad outputs as an
'exogenous' technology shifter.

The remaining paper is organized as follows: The theoretical
framework of the study is presented in section 2. Section 3 describes the
empirical model. The data set employed in the paper is explained in
section 4. The results of the study are discussed in section 5. The
conclusions follow in section 6.

II. Theoretical Framework
                                                       
1 Cropper and Oates (1992); Pittman (1981); Haynes et al. (1993, 1994), Boggs
(1997); Reinhard et al. (1999), Murty and Kumar (2003) etc.
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Conventionally a firm’s performance is assessed by a measure
of productivity based on the estimates of production function without
considering the joint production of good output and bad outputs (pollution
loads). This results in a potentially misleading comparison of productivity
of firms producing significant amounts of undesirable outputs, such as
water and air pollution. When firms divert resources for reducing
undesirable outputs, the input/output ratios of the firm are higher and the
productivity of the plant appears lower. It is understood that the
constraints imposed by environmental regulation on the decisions of the
firm will be subsumed within an overall measure of productivity.

Consider a firm employing a vector of inputs x∈ℜN
+ to produce a

vector of outputs y∈ℜM
+ where ℜN

+, ℜM
+, are non-negative N- and M-

dimensional Euclidean spaces, respectively. Let P(x)  be the feasible
output set for the given input vector x and L(y) is the input requirement
set for a given output vector y. Now the technology set is defined as
(Fare et al. 1994)

T =  {(y, x) ∈ ℜM+N
+, y∈ P(x), x∈L(y) }.                               (1)

The assumptions about the disposability of outputs become very
important in the context of a firm producing both good and bad outputs.
The normal assumption of strong or free disposability about the
technology implies, if (y1, y2 ) ∈ P(x) and 0 ≤ y1 * ≤ y1 , 0 ≤ y2* ≤ y2 ⇒
(y1*,y*2 ) ∈ P(x). This means, we can reduce some outputs given the
other outputs or without reducing them. This assumption may exclude
important production processes, such as undesirable outputs. For
example, in the case of air pollution, Sulfur dioxide (SO2), nitrogen oxides
(NOx), and carbon monoxide (CO) are regulated and the firm cannot
freely dispose of them. The assumption of weak disposability is relevant
to describe such production processes.  The assumption of weak
disposability implies, if y ∈ P(x) and 0  ≤θ  ≤ 1 ⇒  θ y ∈ P(x). This
means a firm can reduce the bad output only by decreasing
simultaneously the good output. Hence one can characterise a world
where there are non-priced outputs in production that the plant manager
has an interest in controlling. The assumption of weak disposability about
the production technology enables one to consider this behavior of the
firm while defining the factor productivity. For the problem considered
here it is convenient to decompose the plant’s output vector into two sub-
vectors, y = (g, b) which represent the desirable output, g, and
undesirable outputs, b, of the production process. The difference
between these two types of outputs is captured via the disposability



10

assumptions. Here it is assumed that the desirable outputs are freely
disposable and the undesirable outputs may only be weakly disposable.
That is, the firm may have to expand resources (or reduce ‘good’ output)
to reduce the bad outputs.

II. 1. Input Distance Function

The conventional production function defines the maximum
output that can be produced from an exogenously given input vector
while the cost function defines the minimum cost to produce the
exogenously given output. The output and input distance functions
generalize these notions to a multi-output case. The input distance
function, ),( xyiD describes “how far” an input vector is from the

boundary of the representative input set, given the fixed output vector.

Formally, the input distance function is defined as

( ) [ ] },/:min{ , tttttt
i TD ∈= yxxy λλ                                         (2)

 Equation (2) characterizes the input possibility set by the maximum equi-
proportional contraction of all inputs consistent with the technology set
(1). These functions are defined for the technology

ttttT xyx :),{(= can produce }ty , as the ‘maximal’ feasible
proportional contraction of the inputs. The ‘mixed’ periods

function ( )110 , xyiD and ( )001 , xyiD  are defined in the same manner.

The input distance functions can be used to measure the Debreu-Farrell
technical efficiency. The input distance function is homogeneous of
degree one in inputs and dual to the cost function.2  That is:

[ ] [ ]{ }1),,,(:min),,,( ≥= tDtC
xi

xbgwxwbg (3)

where w is a vector of input prices and C is a unit cost function if the
costs are minimized. This implies that the value of input distance function
would be equal to one only when the inputs are used in their cost
minimizing proportions, i.e.,

[ ] [ ] ),,,(/),,,( tDtCi xbgwxwbg = (4)

                                                       
2 For the properties of input distance function, see Fare and Primont (1995).
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Fare and Primont (1995) show that the shadow price for each input is
given by

=w [ ] [ ] ),,,(),,,( tDtC ixi xbgwbg ∇ (5)

If one assumes that the efficiency measures over the desirable outputs
and inputs are well defined and behave as expected, the bad outputs
can be treated as exogenous shifters of the technology set similar to a
time trend or state of technology variable. The advantage of treating the
bad outputs as a shifter of technology is that it credits (penalizes) the
firms for reducing (increasing) the level of bad outputs that they produce
(Atkinson and Dorfman, 2002). To emphasise the point, the input
distance function is now written as:

{ }bgx,bgxbx,g, tTtDi ,,/:sup ∈= λλ
λ

(6)

Assuming a single bad output, Atkinson and Dorfman have derived the
appropriate monotonocity condition for bad outputs as follows. The input
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With the weak disposability assumption that the disposal of bad outputs

is costly, it implies that 0≤
db

dxn  which combined with the non-negativity

property for inputs 0≥
∂
∂

n

i

x

D
, yields .0≥

∂
∂

b

Di

II. 2. Malmquist Productivity Index

The Malmquist index is defined as the ratio of distance functions.
This index requires two mixed period distance function, i.e. t-1,2. The
input based Malmquist is defined as the geometric mean of two periods
indexes as suggested by Caves et al. (1982). Formally the index is
defined as:
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The above equation can equivalently be written as:
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The first ratio measures the changes in the input-based measure
of Farrell technical efficiency between years 0 and 1, i.e., efficiency
changes. The geometric mean of the two ratios inside the bracket
captures the shift in technology between the two periods. This term
measures the technical change, i.e. shift in the production frontier of the
firm over time. The value of M greater (less) than unity indicates the
improvement (deterioration) over time in productivity.

II. 3. Fisher Productivity Index and Profitability Changes

To introduce the Fisher productivity index, we need along with
inputs and outputs quantity variable, the inputs and outputs price vectors

namely tw , and tp  respectively also. The Fisher productivity index is
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defined as the ratio of the Fisher ideal output quantity index and the
Fisher ideal input quantity index. Formally
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Here 
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yp

 is the Georgescu-Roegen’s  (1951) notion of ‘return to

dollar’. The first part of equation (10) measures the current period
profitability changes whereas the second part measures the mixed
period profitability changes. For the interpretation of the Fisher output
oriented productivity index as a measure of profitability for simplicity we

assume that prices are constant, i.e., 10 ww = and 10 pp =  then
equation (10) can be written as:
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Following the notion of ‘return to the dollar’, the equation (11) implies that

there is an improvement in profitability of the firm if 
^

F > 1, it is constant if

=
^

F 1 and there is deterioration in profitability if the 
^

F <1.

In order to measure profitability of the firms, we introduce the profit
maximization problem as:

{ } .1,0,),(max =−=∏ tC ttttt

y t
wyyp (12)

The first order condition for profit maximization, when the cost function is
differentiable, is given by:
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From this equation, we get

),(),( tt
c

ttttt C wywyyp ε= (14)

since ),( tt
c wyε is the cost elasticity of scale (see, Fare and Primont,

1995), i.e.,
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Thus the ‘return to dollar’ is equal to the cost elasticity (from equation
(14), namely
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Moreover, the first part of equation (10), that is the simplified measure of
change in profitability, using equations (4) and (16), can be written as3
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This measure requires information on prices of inputs and outputs, and in
the context of bad outputs the price information is either absent or not
reliable, therefore we need a measure of scale of elasticity based on
input and output quantity only. Therefore, we use the primal input-based
measure of elasticity of scale, i.e. (see, Fare and Primont, 1995)
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This is also known that ),( yxDiε = ),(/1 wycε , when 1),( =yxiD
(see, Fare and Primont, 1995, p.53), therefore, equation (17) can be
expressed as:
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This equation shows that the change in ‘return to dollar’ can be
expressed as the square root of the product of change in efficiency and
scale elasticity. The equation (19) is true when the firms are operating at
the frontier, but in practice the value of input distance function is
generally observed greater than one, i.e. ),( yxiD >1. Therefore,

),(),( yxyx DiiD ε =- ),( wycε , and 
−

F can be expressed as

                                                       

3
−

F and F will not in general be equal since 
−

F  omit mixed period terms.
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Thus the change in return to dollar is the square root of the ratio of scale
elasticities over time.

III. Empirical Model

The computation of Malmquist productivity index and thereby the
change in profitability index for US Electric Utilities requires the
computation of distance functions. The distance functions can be
computed either non-parametrically using the Data Envelope Analysis
(DEA) or parametrically. Here we adopt the parametric approach for the
computation of distance functions, the advantage of this approach is that
it is differentiable. We employ the translog form of input distance function
that is twice differentiable and flexible. The form is given by
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to compute the parameters of equation (21), we use the linear
programming approach developed by Aigner and Chu (1968), that is
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Where K denotes the number of observations. The restrictions in (i)
ensures that the value of input distance function is greater than or equal
to one as the logarithm of this function are restricted to be greater than or
equal to zero. Restriction in (ii) enforces the monotonocity condition of
non-increasing of input distance function in good outputs, whereas the
restriction in (iii) and (iv) enforces that the input distance function is non-
decreasing in bad outputs and inputs respectively. Restriction (v) and (vi)
impose the homogeneity and symmetry conditions respectively as
required by the theory.

The Malmquist index includes total factor productivity changes
due to technical change and technical efficiency changes, to the
exclusion of production scale effects (Orea, 2002). The calculation of the
growth rate in the Malmquist index in equation (8) was carried out as
follows:
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This equation provides a meaningful decomposition of Mln into
changes in technical efficiency and technical changes. The negative sign
of the second term transforms technical progress (regress) into positive
(negative) value. This decomposition has the same structure as the
traditional input-oriented Malmquist productivity index introduced by
Caves et al. (1982).

IV. Data
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Since we are interested in the productivity and profitability effects
of controlling SO2 emissions under the Allowance program since 1995 to
2001, we restricted our attention to electricity generating plants for which
each generating unit had a minimum installed nameplate generating
capacity of 25 megawatts.4 We exclude from our sample plants, which
have missing data or reporting errors in a specific year. The deterministic
linear programming is sensitive to outliers, to minimize the effects of
outliers; we first examined the ratios of each of output to each input and
compared their descriptive statistics across periods. If we observed any
abnormality for any plant for a specific year, we excluded that plant from
our data set. Thus our balanced panel data consist of 67 electric
generating plants for the years 1995-2001.

The process of fossil-fueled electricity generation typically uses
three conventional inputs; namely, fuel, labour, and capital to produce
electricity and emissions of sulfur dioxide. The data come primarily from
two government agencies — the Federal Energy Regulatory Commission
(FERC) and the US Environmental Protection Agency (EPA). These
agencies have over the years provided the public with access to data
concerning regulated utilities and pollution. The FERC maintains an
online database of FERC Form 1 for the years 1994 to the present. The
Form 1 provides annual information of electricity production activities at
the plant level. The EPA maintains an emissions database for all major
US pollution sources. Its Aerometric Information Retrieval System (AIRS)
database is the source of SO2 data for the years 1995 to the present.
The 1990 CAAA required all affected power plants to install continuous
emission monitoring system (CEMS) by 1995. Consequently, all SO2

data from 1995 on are CEMS stack readings.

In summary, our data set consists of a balanced panel of 67
steam electric utility plants operating during 1995-2001. Variables in the
dataset include net generation, fuel input, labour and capital. We employ
total net generation in million kilowatt-hours (kWh), fuel in 1012 British
thermal units (BTUs) of heat content to neutralize the heterogeneous
nature of coal as well as to allow for different type of fuel inputs. Labour
is measured as the annual average number of employees. Capital is
measured in 1996 million dollars. We use this measure of capital rather
than the installed nameplate capacity because we are interested not only
in the generating capacity of a plant, but also the extent to which the
plants have invested in equipment to reduce SO2 emissions. The
descriptive statistics are provided in Table 1.

                                                       
4 Since only the units whose nameplate generating capacity is greater than 25 megawatts
are covered under the Allowance program.
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V. Results

The input distance function in (21) is estimated with and without
pollutant outputs. This allows us to examine the importance of the
inclusion of environmental effects of production activities in our analysis
of productivity and profitability changes. In Table 2 the estimated
parameters for a deterministic distance function following the approach
described in section 3 are presented. Both models, when SO2 is
considered (model1) and when SO2 is ignored (model2) yield first order
coefficients on inputs that have signs consistent with economic theory.
That is the positive signs of inputs with respect to the input distance
function indicate that the value of the function is non-decreasing with
respect to inputs, i.e., as inputs are used more efficiently, a firm becomes
closer to the frontier. The distance functions satisfy the regulatory
conditions on good outputs and convexity on inputs and bad outputs for
average values of the explanatory variables.

 As described earlier the input distance function serves as an
input-based measure of technical efficiency, the yearly average value of
this function in both the models are presented in Table 3. We observe
that the efficiency scores when SO2 emissions are ignored are lower in
comparison to the situation when this pollutant is considered.  It reveals
that the potential to increase the production of electricity with the given
bundle of input decreases as the power plants are not allowed to freely
dispose off the emissions of sulfur dioxide. On average the performance
of these electricity producing firms ranges from 0.695 to 0.813, revealing
that 19 to 30.5 percent of the current conventional inputs can be saved
by improving managerial style and reorganization to the best observed
practice. It is also observed that under both the situations, the average
efficiency scores are decreasing continuously. The difference in technical
efficiency under these two alternative formulations of production
technology remains constant up to 1999 and it starts to increase after
that.

Tables 4 and 5 present the average Malmquist productivity and
Fisher productivity indexes. In these tables we present also the
components of Malmquist productivity indices, viz., technical efficiency
changes and technological changes. (Results by plants are available
from the author). Here it should be noted that Malmquist index represent
an aggregate measure of ‘true’ productivity changes over time rather
than a theoretical change, as it takes into account changes in technical
efficiency over time also. Our methods of computing the productivity
changes and its components as well as profitability changes reflected by
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the Fisher productivity look at marginal changes between adjunct
periods. Recall that index values greater (less) than one denote
improvements (deterioration) in the relevant performance. Here we have
calculated all the indices for both cases: when SO2 is ignored and when
SO2 is considered as bad output in the production process.

When the technology is modeled assuming that power plants
can dispose off the emissions of sulfur dioxide without incurring extra
costs for the given level of electricity, as is conventionally done, the
Fisher index shows profitability declines through 1996 to 2001 (Table 5).
The Malmquist productivity index has value less than unity for all the
study years in comparison to the adjunct years. The decomposition of
the Malmquist index reveals that technical efficiency change index has
value less than one in all the years, except 2000, when it is almost equal
to one. Which implies that technical efficiency is declining over the study
period. The technological change index has value less than one through
out the study period. The changes in the technical efficiency change
index and technological change index explain the variation in the
Malmquist productivity index.

 When the SO2 emissions are considered in the production
technology, we observe that the movements in the Malmquist
productivity index and its components are in the same direction as they
are when the production technology assumes that pollution can be
thrown away without incurring any cost. Unlike Malmquist index, the
Fisher index has lower values for all the study years when the disposal of
SO2 is costly in comparison to the situation when the disposal of sulfur
dioxide emissions is free and in both the situations its value is less than
one and declining over time. The comparison of technical efficiency
change and technological change under alternative production
technologies reveals that when the pollution is modeled as bad output in
the production process the electricity generating plants observe high
technical efficiency change and technical change in comparison to the
production process when SO2 is assumed to be freely disposable in the
production process.5

Managi et al. (2002) takes the ratio of productivity index
measures under weak and strong disposability of bad outputs as a
measure of productivity index of environmental outputs. We extend this
                                                       
5 As pointed out by the reviewer, if the information on the actual trade in SO2

permits are available, it is possible to use the magnitude of this trade and the
prices of the traded permits (as a proxy for the price of the bad output), and
work out productivity and profitability indexes. This could be compared with the
distance function based measures. Unfortunately, this information is not
available at the plant level.
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concept to the measures of profitability also. The ratio of profitability
under weak and strong disposability of bad outputs measures the
change in profitability owing to changes in the environmental outputs.
Table 6 presents the ratios of Malmquist productivity and Fisher
productivity index under these alternative production technologies
concerning the disposability of bad outputs. This table shows that the
index of environmental productivity is greater than one through out the
study period, crediting the firms for the efforts taken on pollution
abatement. But the environmental profitability figure is less than one in
the first two years and it becomes greater than one for the next three
years and again it becomes less than one in the last year, i.e. we are not
observing a consistent trend in environmental profitability. To measure
whether the environmental productivity and environmental profitability
figures are different from one, we apply the various non-parametric tests
(Table 7). From these non-parametric tests it is clear that the
environmental productivity figures are statistically different from one, but
the figures of environmental profitability are not different from one for the
whole sample. But when these tests are applied for yearly figures, it was
found that environmental productivity statistically differs from one during
1998-2001 and environmental profitability statistically differs from one
only in 1999-2000.

At the annual mean level, we observe that the difference in
productivity and profitability under alternative production technologies
concerning the disposability of bad output is very low. This low level of
difference under weak and strong disposability conditions in productivity
and profitability can be explained by the fact that the US electricity
industry is under regulation since decades and making environmental
compliance efforts by investing in abatement technologies. Therefore,
the modeling of these firms under the assumption of free disposability of
bad outputs may be biased and it reduces the difference in productivity
and profitability under alternative production technologies (Fare et al.,
2002).

VI. Conclusion

 In this paper, we have developed and illustrated an analytical
framework for calculating plant specific productivity and profitability
measures. A distinguishing feature of this framework is that it provides
two-piece information simultaneously. It describes the structure of
production technology, and it provides measures of productivity and
profitability for each producer. The major advantage of this framework is
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that it does not require price information for measuring productivity and
profitability of producer.

We estimated productivity and profitability changes for a sample
of 67 electricity-generating plants during the years 1995 to 2001, the
period of SO2 allowance system. We have done this by employing the
input distance function, and then computing Malmquist and Fisher
indexes in the conventional way ignoring the production of SO2

emissions and considering them as bad output in the production process.
We have found that during this era of market-based regulation,
productivity and profitability is declining under both the production
technology situations. It is observed that when the emissions of sulfur
are included, the productivity of the electricity-producing firms is slightly
higher in comparison to the situation when it is measured in conventional
way, crediting the firms for their abatement efforts. Moreover, it is
observed that gap in profitability owing to environmental regulations does
not manifest symmetry of any form.
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    Table 1:  Descriptive Statistics of the Variables Used in the Study

Electricity
(106 kWh)

SO2 (tons) Labour Capital
(Million $)

Heat
(1012 BTU)

1995
Mean 2946.31 24481.61 138.5 230.34 38.5
Maximum 13595.7 145577 419 1598.47 233
Minimum 117.5 309 31 17.23 1.74
Std. Dev. 2822.60 31933.65 97 257.59 39.17
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1996

Mean 3489.75 26322.32 136.75 216.87 40.27
Maximum 26631.2 180590.8 405 1570 212
Minimum 165.3 335.4 29 17.2 2.42
Std. Dev. 4178.76 35979.34 97.48 231.68 38.81
1997
Mean 3230.74 28330.03 127.55 304.27 42.89
Maximum 16009.8 183797 392 3218.24 218
Minimum 145.5 107 29 17.07 2.18
Std. Dev. 3090.25 37988.25 88.29 555.58 40.66
1998
Mean 3154.08 30193.88 138.51 216.95 47.16
Maximum 10904.3 167623.5 746 1520.93 217
Minimum 171.8 786.9 29 16.86 3.99
Std. Dev. 2727.40 35155.93 131.59 234.42 40.77

1999
Mean 3085.06 26221.09 131.16 206.86 44.27
Maximum 11275.6 119655.6 717 1502.59 231

Minimum 7.09 185.2 31 17.10 3.99
Std. Dev. 2548.49 30323.26 111.68 220.48 39.68

2000
Mean 3554.68 24498.22 121.64 220.55 44.74
Maximum 14516.1 156037 384 1467.02 231
Minimum 310.8 503 31 18.06 4.41
Std. Dev. 2947.51 30460.54 84.41 232.23 39.94
2001
Mean 3245.73 24410.58 131.66 206.14 44.49
Maximum 10595.03 135934.9 532 1443.16 201
Minimum 250.4 783.1 31 19.28 3.28
Std. Dev. 2598.45 28471.66 103.96 213.85 38.68

      Table 2:  Translog Input Distance Function Coefficients

Variable Model1 Model2 Variable Model1 Model2

Electricity (y1) -0.523 -0.508 x1*x3 0.010 0.019

SO2 (y2) -0.056 . x2*x3 -0.014 -0.012

Labor (x1) 0.560 0.477 y1*x1 -0.009 -0.011

Capital (x2) 0.091 0.101 y1*x2 0.004 0.003

Heat Input (x3) 0.349 0.423 y1*x3 0.005 0.008
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Time (t) -0.075 -0.096 y2*x1 -0.013 .

Y12 0.032 0.028 y2*x2 0.008 .

Y22 -0.003 . y2*x3 0.005 .

X12 0.085 0.073 y1*t 0.022 0.021

X22 -0.016 -0.011 y2*t 0.0004 .

X32 -0.052 -0.066 x1*t 0.003 0.0003

t2 -0.009 -0.008 x2*t -0.001 -0.0003

Y1*y2 -0.005 . x3*t -0.002 0.00001

X1*x2 -0.013 -0.004 Intercept 3.240 2.927

Note: Model1: SO2 is considered.
         Model1: SO2 is ignored.

   Table 3:  Values of Input Distance Function.

Note: ),( yxiD *: SO2 is considered, ),( yxiD **: SO2 is ignored.

Table 4:  Values of Productivity and Profitability Index Numbers
when SO2 is considered.

Year Efficiency

Change

Technical

Changes

Malmquist

Index

Fisher

Index

1996      0.958 0.954 0.914 0.855

1997 0.960 0.961 0.923 0.834

Year *),( yxiD **),( yxiD

1995 1.231 1.232

1996 1.285 1.287

1997 1.338 1.343

1998 1.411 1.414

1999 1.438 1.460

2000 1.420 1.453

2001 1.440 1.486
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1998 0.948 0.970 0.920 0.851

1999 0.981 0.979 0.961 0.815

2000 1.013 0.986 0.999 0.814

2001 0.985 0.994 0.979 0.763

        Table 5:  Values of Productivity and Profitability Index Numbers
when SO2 is ignored.

Year Efficiency

Change

Technical

Change

Malmquist

Index

Fisher

Index

1996 0.956 0.952 0.910 0.867

1997 0.958 0.958 0.918 0.851

1998 0.950 0.965 0.917 0.846

1999 0.968 0.973 0.943 0.815

2000 1.005 0.979 0.984 0.748

2001 0.976 0.986 0.962 0.783

Table 6 : Environmental Productivity and Profitability Changes.

Year Environmental

Productivity

Environmental

 Profitability

1996 1.005 0.986

1997 1.006 0.980
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1998 1.003 1.006

1999 1.019 1.000

2000 1.015 1.088

2001 1.017 0.974

Table 7 : Values of Various Non-Parametric Tests.

Non-Parametric Test Environmental

Productivity

Environmental

 Profitability

Mean

t-test 3.54(0.0004) 0.583(0.56)

Anova F-test 12.52(0.0004) 0.340(0.56)

Median

Wilcoxon/Mann-Whitney 3.35(0.0008) 0.996(0.32)

Med. chi-square 7.84(0.005) 0.000(1.00)

Adj. Med. Chi-square 7.46(0.006) 0.005(0.94)

Kruskal-Wallis 11.21(0.0008) 0.994(0.32)

Van der Waerden 12.73(0.0004) 1.020(0.31)

   Note: Values in parentheses are the probabilities.


